
ANTIDOTE: Understanding and Defending against
Poisoning of Anomaly Detectors

Benjamin I. P. Rubinstein1 Blaine Nelson1 Ling Huang2 Anthony D. Joseph1,2

Shing-hon Lau1 Satish Rao1 Nina Taft2 J. D. Tygar1

1Computer Science Division, University of California, Berkeley 2Intel Labs Berkeley

ABSTRACT
Statistical machine learning techniques have recently gar-
nered increased popularity as a means to improve network
design and security. For intrusion detection, such methods
build a model for normal behavior from training data and
detect attacks as deviations from that model. This process
invites adversaries to manipulate the training data so that
the learned model fails to detect subsequent attacks.

We evaluate poisoning techniques and develop a defense,
in the context of a particular anomaly detector—namely the
PCA-subspace method for detecting anomalies in backbone
networks. For three poisoning schemes, we show how at-
tackers can substantially increase their chance of success-
fully evading detection by only adding moderate amounts
of poisoned data. Moreover such poisoning throws off the
balance between false positives and false negatives thereby
dramatically reducing the efficacy of the detector.

To combat these poisoning activities, we propose an anti-
dote based on techniques from robust statistics and present a
new robust PCA-based detector. Poisoning has little effect
on the robust model, whereas it significantly distorts the
model produced by the original PCA method. Our tech-
nique substantially reduces the effectiveness of poisoning for
a variety of scenarios and indeed maintains a significantly
better balance between false positives and false negatives
than the original method when under attack.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and Protection; C.4 [Performance of Systems]:
Modeling Techniques; I.2.6 [Artificial Intelligence]: Learn-
ing; K.6.5 [Management of Computing and Informa-

tion Systems]: Security and Protection

General Terms
Measurement, Performance, Security

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’09, November 4–6, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-770-7/09/11 ...$10.00.

Keywords
Network Traffic Analysis, Principal Components Analysis,
Adversarial Learning, Robust Statistics

1. INTRODUCTION
Statistical machine learning (SML) techniques are increas-

ingly being used as tools for analyzing and improving net-
work design and performance. They have been applied to
a variety of problems such as enterprise network fault di-
agnosis [1, 5, 14], email spam filtering [24, 27], worm de-
tection [25], and intrusion detection [16, 30, 33], as well as
many others. These solutions draw upon a variety of tech-
niques from the SML domain including Singular Value De-
composition, clustering, Bayesian inference, spectral anal-
ysis, maximum-margin classification, etc. In many scenar-
ios, these approaches have been demonstrated to perform
well. Many of these SML techniques include a learning
phase during which a model is trained using collected data.
Such techniques have a serious vulnerability, namely they
are susceptible to adversaries who purposefully inject mali-
cious data during the phases of data-collection and model-
building. The intent of such poisoning is to direct an SML
algorithm to learn the wrong model; if adversaries influence
detectors to learn the wrong underlying model or normality,
then such detectors are unable to properly identify abnormal
activities. Poisoning is particularly incentivized when SML
techniques are used as defenses against cybercrime threats.

Other than a few efforts [10, 31, 32], this type of vulnera-
bility has not been extensively explored by those who apply
SML techniques to networking and systems problems. Ap-
plied machine learning researchers have started to address
these problems by focusing on adversarial training of specific
algorithms [2, 8, 22]. The learning theory community has
focused on online learning [4], where data is selected by an
adversary with complete knowledge of the learner, and has
developed efficient algorithms with strong guarantees. How-
ever, the simplifying assumption of all data being produced
by an omniscient adversary does not hold for many practi-
cal threat models. Given the increasing popularity of ap-
plying SML techniques to networking problems, we believe
exploring adversarial learning with realistic threat models is
important and timely.

In this paper we study both poisoning strategies and de-
fenses in the context of a particular anomaly detector, namely
the PCA-subspace method [16], based on Principal Compo-
nent Analysis (PCA). This technique has received a large
amount of attention, leading to extensions [15, 17, 18], and
inspiring related research [3, 12, 20, 28, 33]. We consider

an adversary who knows that an ISP is using a PCA-based
anomaly detector. The adversary’s aim is to evade future
detection by poisoning the training data so that the detec-
tor learns a distorted set of principal components. Because
PCA solely focuses on link traffic covariance, we explore poi-
soning schemes that add chaff (additional traffic) into the
network to increase the variance of network traffic. The end
goal of the attacker is to increase the false negative rate of a
detector, which corresponds to his evasion success rate. In
our abstract [29], we illustrated that simple poisoning strate-
gies can improve an adversary’s ability to evade detection.
Our first contribution in this paper is a detailed analysis of
how adversaries subvert the learning process. We explore a
range of poisoning strategies in which the attacker’s knowl-
edge about the network traffic state is varied, and in which
the attacker’s time horizon (length of poisoning episode) is
varied. (We use the words ‘attackers’ and ‘adversaries’ inter-
changeably.) Through theoretical analysis of global poison-
ing tactics, we uncover some simple and effective poisoning
strategies for the adversary. In order to gain insights as to
why these attacks work, we illustrate their impact on the
normal model built by the PCA detector.

Because the networks that SML techniques are used in are
non-stationary, the baseline models must be periodically re-
trained to capture evolving trends in the underlying data.
In previous usage scenarios [16, 30], the PCA detector is
retrained regularly (e.g., weekly), meaning that attackers
could poison PCA slowly over long periods of time; thus poi-
soning PCA in a more stealthy fashion. By perturbing the
principal components gradually, the attacker decreases the
chance that the poisoning activity itself is detected. We de-
sign such a poisoning scheme, called a Boiling Frog scheme,
and demonstrate that it can boost the false negative rate as
high as the non-stealthy strategies, with far less chaff, albeit
over a longer period of time.

Our second contribution is to design a robust defense
against this type of poisoning. It is known that PCA can
be strongly affected by outliers [28]. However, instead of
finding the principal components along directions that max-
imize variance, robust statistics suggests components that
maximize more robust measures of dispersion. It is well
known that the median is a more robust measure of loca-
tion than the mean, in that it is far less sensitive to the
influence of outliers. This concept can be extended to ro-
bust alternatives to variance such as the Median Absolute
Deviation (MAD). Over the past two decades a number of
robust PCA algorithms have been developed that maximize
MAD instead of variance. Recently the PCA-GRID algo-
rithm was proposed as an efficient method for maximizing
MAD without under-estimating variance (a flaw identified in
previous solutions) [6]. We adapt PCA-GRID for anomaly
detection by combining the method with a new robust cutoff
threshold. Instead of modeling the squared prediction error
as Gaussian (as in the original PCA method), we model the
error using a Laplace distribution. The new threshold was
motivated from observations of the residual that show longer
tails than exhibited by Gaussian distributions. We call our
method that combines PCA-GRID with a Laplace cutoff
threshold, antidote. The key intuition behind this method
is to reduce the effect of outliers and help reject poisonous
training data.

Our third contribution is to carry out extensive evalua-
tions of both antidote and the original PCA method, in

a variety of poisoning situations, and to assess their perfor-
mance via multiple metrics. To do this, we used traffic ma-
trix data from the Abilene network since many other studies
of traffic matrix estimation and anomaly detection have used
this data. We show that the original PCA method can be
easily compromised by any of our poisoning schemes, with
only small amounts of chaff. For moderate amounts of chaff,
the PCA detector starts to approach the performance of a
random detector. However, antidote is dramatically more
robust. It outperforms PCA in that i) it more effectively
limits the adversary’s ability to increase his evasion success;
ii) it can reject a larger portion of contaminated training
data; and iii) it provides robust protection across nearly all
origin-destination flows through a network. The gains of an-

tidote for these performance measures are large, especially
as the amount of poisoning increases. Most importantly,
we demonstrate that antidote incurs insignificant shifts in
its false negative and false positive performance, compared
to PCA, when no poisoning events happen; however when
poisoning does occur, the gains of antidote over PCA are
enormous with respect to both of these traditional perfor-
mance measures. The PCA method was not designed to
be robust. Our results indicate that it is possible to take
such useful techniques and bolster their performance under
difficult circumstances.

Our study sheds light on the general problem of poisoning
SML techniques, in terms of the types of poisoning schemes
that can be construed, their impact on detection, and strate-
gies for defense.

Related Work. Several earlier studies examined attacks
on specific learning systems for related applications. In [26],
the authors describe red herring attacks that weaken poly-
morphic worm detection systems by poisoning the training
data used to build signature-based classifiers. In red herring
attacks, the adversary forces the learner to make false neg-
ative predictions by including spurious features in positive
training examples. Subsequent malicious instances evade
detection by excluding these features, now included as con-
juncts in the conjunction learned by Polygraph. Venkatara-
man et al. [31] present lower bounds for learning worm sig-
natures based on red herring attacks and reductions to clas-
sic results from Query Learning. While the red herring at-
tacks exploit the Polygraph conjunction learner’s tendency
to overfit, our poisoning attacks exploit PCA’s singular focus
on link traffic covariance.

Attacks that increase false negative rates by manipulat-
ing the test data have also been explored. The polymorphic
blending attacks of Fogla and Lee [10] encrypt malicious
traffic so that the traffic is indistinguishable from innocu-
ous traffic to an intrusion detection system. By contrast
our variance injection attacks add small amounts of chaff to
largely innocuous training traffic to make the traffic appear
more like future DoS attacks to be launched post-poisoning.
In the email spam filtering domain, Wittel and Wu [32] and
Lowd and Meek [22] add good words—tokens the filter as-
sociates with non-spam messages—so spam messages can
evade detection.

Ringberg et al. [28] performed a study of the sensitivities
of the PCA method that illustrates how the PCA method
can be sensitive to the number of principal components used
to describe the normal subspace. This parameter can limit
PCA’s effectiveness if not properly configured. They also
show that routing outages can pollute the normal subspace;

a kind of perturbation to the subspace that is not adversar-
ial. Our work differs in two key ways. First we demonstrate
a different type of sensitivity, namely that of data poisoning.
This adversarial perturbation can be stealthy and subtle,
and is more challenging to circumvent than observable rout-
ing outages. Second, [28] focuses on showing the variability
in PCA’s performance to certain sensitivities, and not on
defenses. In our work, we propose a robust defense against
a malicious adversary and demonstrate its effectiveness. It
is conceivable that the technique we propose could help limit
PCA’s sensitivity to routing outages, although such a study
is beyond the scope of this paper. A recent study [3] showed
that the sensitivities observed in [28] come from PCA’s in-
ability to capture temporal correlations. They propose to
replace PCA by a Karhunen-Loeve expansion. Our study
indicates that it would be important to examine, in future
work, the data poisoning robustness of this proposal.

2. BACKGROUND
To uncover anomalies, many network anomography detec-

tion techniques mine the network-wide traffic matrix, which
describes the traffic volume between all pairs of Points-of-
Presence (PoP) in a backbone network and contains the col-
lected traffic volume time series for each origin-destination
(OD) flow. In this section, we define traffic matrices, present
our notation, and summarize the PCA anomaly detection
method of Lakhina et al. [16].

2.1 Traffic Matrices and Volume Anomalies
Network link traffic represents the superposition of OD

flows. We consider a network with N links and F OD flows
and measure traffic on this network over T time intervals.
The relationship between link traffic and OD flow traffic is
concisely captured in the routing matrix A. This matrix is
an N ×F matrix such that Aij = 1 if OD flow j passes over
link i, and is zero otherwise. If X is the T ×F traffic matrix
(TM) containing the time-series of all OD flows, and if Y is
the T × N link TM containing the time-series of all links,
then Y = XA⊤. We denote the tth row of Y as y(t) = Yt,•

(the vector of N link traffic measurements at time t), and the
original traffic along a source link, S by yS(t). We denote
column f of routing matrix A by Af .

We consider the problem of detecting OD flow volume
anomalies across a top-tier network by observing link traf-
fic volumes. Anomalous flow volumes are unusual traffic
load levels in a network caused by anomalies such as De-
nial of Service (DoS) attacks, Distributed DoS attacks, flash
crowds, device failures, misconfigurations, and so on. DoS
attacks serve as the canonical example attack in this paper.

2.2 Subspace Method for Anomaly Detection
We briefly summarize the PCA-based anomaly detector

introduced by Lakhina et al. [16]. The authors observed high
levels of traffic aggregation on ISP backbone links cause OD
flow volume anomalies to often go unnoticed because they
are buried within normal traffic patterns. They also observe
that although the measured data has high dimensionality,
N , normal traffic patterns lie in a subspace of low dimension
K ≪ N . Inferring this normal traffic subspace using PCA
(which finds the principal traffic components) makes it eas-
ier to identify volume anomalies in the remaining abnormal
subspace. For the Abilene (Internet2 backbone) network,

most variance can be captured by the first K = 4 principal
components.

PCA is a dimensionality reduction method that chooses
K orthogonal principal components to form a K-dimensional
subspace capturing maximal variance in the data. Let Ȳ be
the centered link traffic matrix, i.e., with each column of Y is
translated to have zero mean. The kth principal component
is computed as

vk = arg max
w:‖w‖=1

‚

‚

‚

‚

‚

Ȳ

I−
k−1
X

i=1

viv
⊤
i

!

w

‚

‚

‚

‚

‚

. (1)

The resulting K-dimensional subspace spanned by the first
K principal components V1:K = [v1,v2, . . . ,vK] is the nor-
mal traffic subspace Sn and has a projection matrix Pn =
V1:KV⊤

1:K . The residual (N − K)-dimensional subspace is
spanned by the remaining principal components VK+1:N =
[vK+1,vK+2, . . . ,vN]. This space is the abnormal traffic
subspace Sa with a corresponding projection matrix Pa =
VK+1:NV⊤

K+1:N = I−Pn.
Volume anomalies can be detected by decomposing the

link traffic into y(t) = yn(t)+ya(t) where yn(t) is the mod-
eled normal traffic and ya(t) is the residual traffic, corre-
sponding to projecting y(t) onto Sn and Sa, respectively. A
volume anomaly at time t typically results in a large change
to ya(t), which can be detected by thresholding the squared
prediction error ‖ya(t)‖2 against Qβ, the Q-statistic at the
1−β confidence level [13]. That is, the PCA-based detector
classifies a link measurement vector as

c (y (t)) =

(

anomalous, ‖ya(t)‖2 > Qβ

innocuous, ‖ya(t)‖2 ≤ Qβ

. (2)

While others have explored more efficient distributed vari-
ations of this approach [12, 20, 21], we focus on the basic
method introduced by Lakhina et al. [16].

3. POISONING STRATEGIES

3.1 The Threat Model
The adversary’s goal is to launch a Denial of Service (DoS)

attack on some victim and to have the attack traffic success-
fully cross an ISP’s network without being detected. The
DoS traffic thus needs to traverse from an ingress point-of-
presence (PoP) node to an egress PoP of the ISP. Before
launching a DoS attack, the attacker poisons the detector
for a period of time, by injecting additional traffic, chaff,
along the OD flow (i.e., from an ingress PoP to an egress
PoP) that he eventually intends to attack. This kind of poi-
soning activity is possible if the adversary gains control over
clients of an ingress PoP or if the adversary compromises
a router (or set of routers) within the ingress PoP. For a
poisoning strategy, the attacker needs to decide how much
chaff to add, and when to do so. These choices are guided
by the amount of information available to the attacker.

We consider poisoning strategies in which the attacker
has increasing amounts of information at his disposal. The
weakest attacker is one that knows nothing about the traffic
at the ingress PoP, and adds chaff randomly (called an unin-
formed attack). An intermediate case is when the attacker is
partially informed. Here the attacker knows the current vol-
ume of traffic on the ingress link(s) that he intends to inject
chaff on. Because many networks export SNMP records, an

adversary might intercept this information, or possibly mon-
itor it himself (i.e., in the case of a compromised router).
We call this type of poisoning a locally-informed attack. Al-
though exported data from routers may be delayed in reach-
ing the adversary, we consider the case of minimal delay in
our first study of this topic.

In a third scenario, the attacker is globally-informed be-
cause his global view over the network enables him to know
the traffic levels on all network links. Moreover, we assume
this attacker has knowledge of future traffic link levels. (Re-
call that in the locally-informed scheme, the attacker only
knows the current traffic volume of a link.) Although these
attacker capabilities are very unlikely, we include this in our
study in order to understand the limits of variance injection
poisoning schemes. Also this scenario serves as a difficult
test for our antidote technique.

Poisoning strategies can also vary according to the time
horizon over which they are carried out. Most studies on
the PCA-subspace method use a one week training period,
so we assume that PCA is retrained each week. Thus the
PCs used in any week m are those learned during week m−1
with any detected anomalies removed. Thus for our poison-
ing attacks, the adversary inserts chaff along the target OD
flow throughout the one week training period. We also con-
sider a long-term attack in which the adversary slowly, but
increasingly, poisons the principal components over several
weeks, by adding small amounts of chaff, in gradually in-
creasing quantities. We call this the Boiling Frog poisoning
method after the folk tale that one can boil a frog by slowly
increasing the water temperature over time1.

We assume the adversary does not have control over exist-
ing traffic (i.e., he cannot delay or discard traffic). Similarly,
the adversary cannot submit false SNMP reports to PCA.
Such approaches are more conspicuous because the incon-
sistencies in SNMP reporting from neighboring PoPs could
expose the compromised router.

This paper focuses on non-distributed poisoning of DoS
detectors. Distributed poisoning that aims to evade a DoS
detector is also possible; our globally-informed poisoning
strategy is an example, as the adversary has control over
all network links. We focus on DoS for a two reasons. In
our first study on this topic, we aim to solve the basic prob-
lem first before tackling a distributed version. Second, we
point out that results on evasion via non-distributed poi-
soning are stronger than distributed poisoning results: the
DDoS attacker can monitor and influence many more links
than the DoS attacker. Hence a DoS poisoning scenario is
usually stealthier than a DDoS one.

For each of these scenarios of different information avail-
able to the adversary, we now outline specific poisoning
schemes. In each scheme, the adversary decides on the quan-
tity of ct chaff to add to the target flow time series at a time
t. Each strategy has an attack parameter θ, which controls
the intensity of the attack. For each scenario, we present
only one specific poisoning scheme. We have studied others,
but those included here are representative.

1Note that there is nothing inherent in the choice of a one-
week poisoning period. For a general SML algorithm, our
strategies would correspond to poisoning over one training
period (whatever its length) or multiple training periods.

3.2 Uninformed Chaff Selection
At each time t, the adversary decides whether or not to

inject chaff according to a Bernoulli random variable. If he
decides to inject chaff, the amount of chaff added is of size
θ, i.e., ct = θ. This method is independent of the network
traffic since our attacker is uninformed. We call this the
Random scheme.

3.3 Locally-Informed Chaff Selection
The attacker’s goal is to increase traffic variance, on which

the PCA detector’s model is based. In the locally-informed
scenario, the attacker knows the volume of traffic in the
ingress link he controls, yS(t). Hence this scheme elects to
only add chaff when the existing traffic is already reasonably
large. In particular, we add chaff when the traffic volume on
the link exceeds a parameter α (we typically use the mean).

The amount of chaff added is ct = (max {0, yS(t)− α}})θ.
In other words, we take the difference between the link traf-
fic and a parameter α and raise it to θ. In this scheme
(called Add-More-If-Bigger), the further the traffic is from
the average load, the larger the deviation of chaff inserted.

3.4 Globally-Informed Chaff Selection
The globally-informed scheme captures an omnipotent ad-

versary with full knowledge of Y, A, and the future mea-
surements ỹt, and who is capable of injecting chaff into any
network flow during training. This latter point is important.
In previous poisoning schemes the adversary can only inject
chaff along their compromised link, whereas in this scenario,
the adversary can inject chaff on any link. We formalize
the problem of selecting a link n to poison, and selecting
an amount of chaff Ctn as an optimization problem that
the adversary solves to maximally increase his chances of
evasion. Although these globally-informed capabilities are
unrealistic, we include a globally-informed poisoning strat-
egy in order to understand the limits of variance injection
methods.

The PCA Evasion Problem considers an adversary wish-
ing to launch an undetected DoS attack of volume δ along
flow f at time t. If the vector of link volumes at future time
t is ỹt, where the tilde distinguishes this future measurement
from past training data Ȳ, then the vectors of anomalous
DoS volumes are given by ỹ′

t = ỹt + δ ∗Af . Denote by C

the matrix of link traffic injected into the network by the
adversary during training. Then the PCA-based anomaly
detector is trained on altered link traffic matrix Ȳ + C to
produce the mean traffic vector µ, the top K eigenvectors
V1:K , and the squared prediction error threshold Qβ. The
adversary’s objective is to enable as large a DoS attack as
possible (maximizing δ) by designing C. The PCA Evasion
Problem corresponds to solving the following:

max
δ∈R, C∈RT×F

δ

s.t. (µ, V, Qβ) = PCA(Y + C)
‚

‚

‚
V

⊤
K+1:N(ỹ′

t − µ)
‚

‚

‚

2
≤ Qβ

‖C‖1 ≤ θ ∀t, n Ctn ≥ 0 ,

where θ is a constant constraining total chaff. The second
constraint guarantees evasion by requiring that the contam-
inated link volumes at time t are classified innocuous (cf.
Eq. 2). The remaining constraints upper-bound the total
chaff volume by θ and constrain the chaff to be non-negative.

Unfortunately, this optimization is difficult to solve an-
alytically. Thus we construct a relaxed approximation to
obtain a tractable analytic solution. We make a few as-
sumptions and derivations2, and show that the above objec-
tive seeks to maximize the attack direction Af ’s projected
length in the normal subspace maxC∈RT×F

‚

‚V⊤
1:KAf

‚

‚

2
.

Next, we restrict our focus to traffic processes that gener-
ate spherical k-rank link traffic covariance matrices3. This
property implies that the eigen-spectrum consists of K ones
followed by all zeroes. Such an eigen-spectrum allows us
to approximate the top eigenvectors V1:K in the objective,
with the matrix of all eigenvectors weighted by their corre-
sponding eigenvalues ΣV. We can thus convert the PCA
evasion problem into the following optimization:

max
C∈RT×F

‚

‚(Ȳ + C)Af

‚

‚

2
(3)

s.t. ‖C‖1 ≤ θ

∀t, n Ctn ≥ 0 .

Solutions to this optimization are obtained by a standard
Projection Pursuit method from optimization: iteratively
take a step in the direction of the objective’s gradient and
then project onto the feasible set.

These solutions yield an interesting insight. Recall that
our adversary is capable of injecting chaff along any flow.
One could imagine that it might be useful to inject chaff
along an OD flow whose traffic dominates the choice of prin-
cipal components (i.e., an elephant flow), and then send the
DoS traffic along a different flow (that possibly shares a
subset of links with the poisoned OD flow). However the
solutions of Eq. (3) indicates that the best strategy to evade
detection is to inject chaff only along the links Af associated
with the target flow f . This follows from the form of the ini-
tializer C(0) ∝ ȲAfA

⊤
f (obtained from an L2 relaxation)

as well as the form of the projection and gradient steps. In
particular, all these objects preserve the property that the
solution only injects chaff along the target flow. In fact, the
only difference between this globally-informed solution and
the locally-informed scheme is that the former uses infor-
mation about the entire traffic matrix Y to determine chaff
allocation along the flow whereas the latter use only local
information.

3.5 Boiling Frog Attacks
Boiling Frog poisoning can use any of the preceding chaff

schemes to select ct. The duration of poisoning is increased
as follows. We initially set the attack parameter θ to a small
value and then increase it slowly over time. In the first week
of the attack, the target flow is injected with chaff generated
using parameter θ1. At the week’s end, PCA is retrained on
that week’s data. Any anomalies detected by PCA during
that week are excluded from future training data. This pro-
cess continues with θt > θt−1 used for week t. Even though
PCA is retrained from scratch each week, the training data
includes events not caught by the previous detector. Thus,
each successive week will contain additional malicious train-
ing data, with the process continuing until the week of the
DoS attack, when the adversary stops injecting chaff.

2The full proof is ommitted due to space constraints.
3While the spherical assumption does not hold in practice,
the assumption of low-rank traffic matrices is met by pub-
lished datasets [16].

4. ANTIDOTE: A ROBUST DEFENSE
For defenses against our attacks on PCA-based anom-

aly detection we explore techniques from Robust Statistics.
Such methods are less sensitive to outliers, and as such are
ideal defenses against variance injection schemes that per-
turb data to increase variance along the target flow. There
have been two approaches to make PCA robust: the first
computes the principal components as the eigenspectrum of
a robust estimate of the covariance matrix [9], while the
second approach searches for directions that maximize a ro-
bust scale estimate of the data projection. We propose one
of the latter methods as a defense against our poisoning.
After describing the method, we propose a new threshold
statistic that can be used for any PCA-based method includ-
ing robust PCA. Robust PCA and the new robust Laplace
threshold together form a new network-wide traffic anomaly
detection method, antidote, that is less sensitive to our
poisoning attacks.

4.1 Intuition
Fundamentally, to mitigate the effect of poisoning attacks,

we need a learning algorithm that is stable in spite of data
contamination; i.e., a small amount of data contamination
should not dramatically change the model produced by our
algorithm. This concept of stability has been studied in the
field of Robust Statistics in which robust is the formal term
used to qualify this notion of stability. In particular, there
have been several approaches to developing robust PCA al-
gorithms that construct a low dimensional subspace that
captures most of the data’s dispersion4 and are stable un-
der data contamination [6, 7, 9, 19, 23].

The robust PCA algorithms we considered search for a
unit direction v whose projections maximize some univariate
dispersion measure S (·); that is,

v ∈ arg max
‖a‖2=1

S (Ya) . (4)

The standard deviation is the dispersion measure used by

PCA; i.e., SSD (r1, r2, . . . , rn) =
“

1
n−1

Pn
i=1 ri − r̄

”1/2

. How-

ever, the standard deviation is sensitive to outliers making
PCA non-robust to contamination. Robust PCA algorithms
instead use measures of dispersion based on the concept of
robust projection pursuit (RPP) estimators [19]. As is shown
by Li & Chen, RPP estimators achieve the same breakdown
points as their dispersion measure (the breakdown point is
the (asymptotic) fraction of the data an adversary must con-
trol in order to arbitrarily change an estimator, and as such
is a common measure of statistical robustness) as well as
being qualitatively robust; i.e., the estimators are stable.

However, unlike the eigenvector solutions that arise in
PCA, there is generally no efficiently computable solution
for robust dispersion measures and so these must be approx-
imated. Below, we describe the PCA-GRID algorithm, a
successful method for approximating robust PCA subspaces
developed by Croux et al. [6]. Among the projection pur-
suit techniques we tried [7, 23], PCA-GRID proved to be
most resilient to our poisoning attacks. It is worth empha-
sizing that the procedure described in the next section is

4Dispersion is an alternative term for variation since the
later is often associated with statistical variation. By a dis-
persion measure we mean a statistic that measures the vari-
ability or spread of a variable.

5e+08 6e+08 7e+08 8e+08 9e+08 1e+09

0e
+

00
2e

+
07

4e
+

07
6e

+
07

8e
+

07
1e

+
08

Projection on 1st PC

P
ro

je
ci

to
n

on
to

 T
ar

ge
t F

lo
w

Initial PCA
Initial ANTIDOTE

Subspaces with no Poisoning

5e+08 6e+08 7e+08 8e+08 9e+08 1e+09

0e
+

00
2e

+
07

4e
+

07
6e

+
07

8e
+

07
1e

+
08

Projection on 1st PC

P
ro

je
ci

to
n

on
to

 T
ar

ge
t F

lo
w

Initial PCA
Initial ANTIDOTE
Poisoned PCA
Poisoned ANTIDOTE

Subspaces with 35 % Poisoning

Figure 1: Here the data has been projected into the 2D

space spanned by the 1st principal component and the

direction of the attack flow #118. The effect on the 1st

principal components of PCA and PCA-GRID is shown

under a globally informed attack (represented by ◦’s).

simply a technique for approximating a projection pursuit
estimator and does not itself contribute to the algorithm’s
robustness—that robustness comes from the definition of the
projection pursuit estimator in Eq. (4).

First, to better understand the efficacy of a robust PCA al-
gorithm, we demonstrate the effect our poisoning techniques
have on the PCA algorithm and contrast them with the ef-
fect on the PCA-GRID algorithm. In Figure 1, we see the
impact of a globally informed poisoning attack on both algo-

rithms. Initially, the data was clustered in an ellipse. In the
top plot, we see that both algorithms construct reasonable
estimates for the center and first principal component for
this data. However, in the bottom plot, we see that a large
amount of poisoning dramatically perturbs some of the data
and as a result the PCA subspace is dramatically shifted to-
ward the target flow’s direction (y-axis). Due to this shift,
DoS attacks along the target flow will be less detectable.
Meanwhile, the subspace of PCA-GRID is noticeably less
affected.

4.2 PCA-GRID
The PCA-GRID algorithm introduced by Croux et al. [6]

is a projection pursuit technique as described above. It
finds a K-dimensional subspace that approximately maxi-
mizes S (·), a robust measure of dispersion, for the data Y as
in Eq. (4). The first step is to specify our robust dispersion
measure. We use the Median Absolute Deviation (MAD) ro-
bust measure of dispersion, over other possible choices for
S (·). For scalars r1, . . . , rn the MAD is defined as

SMAD (r1, . . . , rn) = ω ·median {|ri −median{rj}|} ,

where the coefficient ω = 1.486 ensures asymptotic consis-
tency on normal distributions.

The next step requires choosing an estimate of the data’s
central location. In PCA, this estimate is simply the mean
of the data. However, the mean is not robust, so we center
the data using the spatial median instead:

ĉ (Y) ∈ arg min
µ∈RN

n
X

i=1

‖yi − µ‖2 ,

which involves a convex optimization that is efficiently solved
(see e.g., [11]).

Given a dispersion measure and location estimate, PCA-

GRID finds a (unit) direction v that is an approximate so-
lution to Eq. (4). The PCA-GRID algorithm uses a grid-
search for this task. Namely, suppose we want to find the
best candidate between some pair of unit vectors a1 and
a2 (a 2D search space). The search space is the unit cir-
cle parameterized by φ as aφ = cos(φ)a1 + sin(φ)a2 with
φ ∈ [−π/2, π/2]. The grid search splits the domain of φ into

a mesh of Q + 1 candidates φk = π
2

“

2k
Q
− 1
”

, k = 0, . . . , Q.

Each candidate vector aφk
is assessed and the one that max-

imizes S (Yaφk
) is the approximate maximizer â.

To search a more general N-dimensional space, the search
iteratively refines its current best candidate â by performing
a grid search between â and each of the unit directions ei.
With each iteration, the range of angles considered progres-
sively narrows around â to better explore its neighborhood.
This procedure (outlined in Algorithm 1) approximates the
direction of maximal dispersion analogous to an eigenvector
in PCA.

To find the K-dimensional subspace {vi | v⊤
i vj = δi,j}

that maximizes the dispersion measure, the Grid-Search is
repeated K-times. After each repetition, the data is deflated
to remove the dispersion captured by the last direction from
the data. This process is detailed in Algorithm 2.

4.3 Robust Laplace Threshold
In addition to the robust PCA-GRID algorithm, we also

use a robust estimate for its residual threshold in place of the
Q-statistic described in Section 2.2. Using the Q-statistic as

Algorithm 1 Grid-Search(Y)

Require: Y is a T ×N matrix
1: Let: v̂ = e1;
2: for i = 1 to C do

3: for j = 1 to N do

4: for k = 0 to Q do

5: Let: φk = π
2i

“

2k
Q
− 1
”

;

6: Let: aφk
= cos(φk)â + sin(φk)ej ;

7: if S (Yaφk
) > S (Yv̂) then

8: Assign: v̂← aφk
;

9: Return: v̂;

Algorithm 2 PCA-GRID(Y,K)

1: Center Y: Y ← Y − ĉ (Y);
2: for i = 1 to K do

3: vi ← Grid-Search(Y);
4: Y ← projection of Y onto the complement of vi;
5: end for

6: Return subspace centered at ĉ (Y) with principal direc-
tions {vi}Ki=1;

a threshold was motivated by an assumption of normally dis-
tributed residuals [13]. However, we found that the residuals
for both the PCA and PCA-GRID subspaces were empiri-
cally non-normal leading us to conclude that the Q-statistic
is a poor choice for our detection threshold. Instead, to ac-
count for the outliers and heavy-tailed behavior we observed
from our method’s residuals, we choose our threshold as the
1 − β quantile of a Laplace distribution fit with robust lo-
cation and scale parameters. Our solution, antidote is the
combination of the PCA-GRID algorithm and the Laplace
threshold. The non-normality of the residuals has also been
recently pointed out in [3].

As with the previous method described in Section 2.2, we
select our threshold QL,β as the 1 − β quantile of a para-
metric distribution fit to the residuals in the training data.
However, instead of the normal distribution assumed by the
Q-statistic, we use the quantiles of a Laplace distribution
specified by a location parameter c and a scale parameter b.
Critically, though, instead of using the mean and standard
deviation, we robustly fit the distribution’s parameters. We
estimate c and b from the residuals ‖ya(t)‖2 using robust
consistent estimates of location (median) and scale (MAD)

ĉ = median
`

‖ya(t)‖2
´

b̂ =
1√

2P−1(0.75)
median

˘˛

˛‖ya(t)‖2 − ĉ
˛

˛

¯

where P−1(q) is the qth quantile of the standard Laplace
distribution. The Laplace quantile function has the form
P−1

c,b (q) = c+b ·k(q) for some k(q). Thus, our threshold only

depends linearly on the (robust) estimates ĉ and b̂ making
the threshold itself robust. This form is also shared by the
normal quantiles (differing only in the function k(q)), but
because non-robust estimates for c and b are implicitly used
by the Q-statistic, it is not robust. Further, by choosing
a heavy-tailed distribution like the Laplace, the quantiles
are more appropriate for the heavy-tails we observed, but
the robustness of our threshold comes from our parameter
estimation.

Histogram of PCA Residuals

Residual Size

F
re

qu
en

cy

0e+00 2e+08 4e+08 6e+08 8e+08

0
50

10
0

15
0

20
0

Qstat

Laplace

Histogram of PCA−GRID Residuals

Residual Size

F
re

qu
en

cy
0e+00 2e+08 4e+08 6e+08 8e+08

0
50

10
0

15
0

20
0

Qstat

Laplace

Figure 2: Histograms of the residuals for the original

PCA algorithm (left) and the PCA-GRID algorithm (the

largest residual is excluded as an outlier). Red and blue

vertical lines demarcate the threshold selected using the

Q-statistic and the Laplace threshold, respectively.

Empirically, the Laplace threshold also proved to be better
suited for thresholding the residuals of our models than the
Q-statistic. As can be seen in Figure 2, both the Q-statistic
and the Laplace threshold produce a reasonable threshold
on the residuals of the PCA algorithm but only the Laplace
threshold produces a reasonable threshold for the residuals
of the PCA-GRID algorithm; the Q-statistic vastly underes-
timates the spread of the residuals. As was consistently seen
throughout our experiments, the Laplace threshold proved
to be a more reliable threshold than the Q-statistic.

5. METHODOLOGY

5.1 Traffic Data
We use OD flow data collected from the Abilene (Inter-

net2 backbone) network to simulate attacks on PCA-based
anomaly detection. Data was collected over an almost con-
tinuous 6 month period from March 1, 2004 through Septem-
ber 10, 2004 [33]. Each week of data consists of 2016 mea-
surements across all 144 network OD flows binned into 5
minute intervals. At the time of collection the network con-
sisted of 12 PoPs and 15 inter-PoP links. 54 virtual links
are present in the data corresponding to two directions for
each inter-PoP link and an ingress and egress link for each
PoP.

5.2 Validation
To evaluate the subspace method and antidote in the

face of poisoning and DoS attacks, we use two consecutive
weeks of data—the first for training and the second for test-
ing. The poisoning occurs throughout the training phase,
while the attack occurs during the test week. An alter-
nate method (described later) is needed for the Boiling Frog
scheme where training and poisoning occur over multiple
weeks. Our performance metric for measuring the success of
the poisoning strategies is through their impact on a PCA-
based detector’s false negative rate (FNR). The FNR is the
ratio of the number of successful evasions to the total num-
ber of attacks (i.e., the attacker’s success rate is PCA’s FNR
rate). We also use Receiver Operating Characteristic (ROC)
curves to visualize a detection method’s trade-off between
detection rate (TPR) and false positive rate (FPR).

In order to compute the FNRs and FPRs, we generate
synthetic anomalies according to the method of Lakhina et
al. [16] and inject them into the Abilene data. While there
are disadvantages to this method, such as the conservative
assumption that a single volume size is anomalous for all
flows, we adopt it for the purposes of relative comparison
between PCA and Robust PCA, to measure relative effects
of poisoning, and for consistency with prior studies. We use
week-long training sets, as such a time scale is sufficiently
large to capture weekday and weekend cyclic trends [28], and
previous studies operated on this same time scale [16]. There
is nothing inherent to our method that limits its use to this
time scale; our methods will work as long as the training
data is poisoned throughout. Because the data is binned in
5 minute windows (corresponds to the reporting interval of
SNMP), a decision about whether or not an attack is present
can be made at the end of each 5 minute window; thus
attacks can be detected within 5 minutes of their occurrence.

Starting with the flow traffic matrix X for the test week,
we generate a positive example (an anomalous OD flow) by
setting flow f ’s volume at time t, Xt,f , to be a large value
known to correspond to an anomalous flow (replacing the
original traffic volume in this time slot). This value is de-
fined [16] to be 1.5 times a cutoff of 8×107. After multiplying
by the routing matrix A, the link volume measurement at
time t is anomalous. We repeat this process for each time t
(each 5 minute window) in the test week to generate a set
of 2016 anomaly samples for the single target flow f .

In order to obtain FPRs, we generate negative examples
(benign OD flows) as follows. We fit the data to an EWMA
model that is intended to capture the main trends of the
data without much noise. We use this model to select which
points in time, in an Abilene flow’s time series, to use as
negative examples. We compare the actual data and the
EWMA model, and if the difference is small (not in the flow’s
top one percentile) for a particular flow at a particular time,
Xt,f , then we label the element Xt,f as “benign.” We do
this across all flows; when we find time slots where all flows
are labeled as benign, we run our detectors and see whether
or not they raise an alarm for those time slots.

We simulate a DoS attack along every flow at every time.
We average FNRs over all 144 possible anomalous flows and
all 2016 anomaly times. When reporting the effect of an
attack on traffic volumes, we first average over links within
each flow then over flows. Furthermore we generally re-
port average volumes relative to the pre-attack average vol-
umes. Thus a single poisoning experiment was based on one

week of poisoning with FNRs computed during the test week
that includes 144 × 2016 samples coming from the different
flows and time slots. Because the poisoning is determinis-
tic in Add-More-If-Bigger this experiment was run once for
that scheme. In contrast, for the Random poisoning scheme,
we ran 20 independent repetitions of poisoning experiments
data because the poisoning is random.

To produce the ROC curves, we use the squared prediction
errors produced by the detection methods, that consist of
anomalous and normal examples from the test set. By vary-
ing the method’s threshold from −∞ to∞ a curve of possible
(FPR,TPR) pairs is produced from the set of SPE’s; the
Q-statistic and Laplace threshold, each correspond to one
such point in ROC space. We adopt the Area Under Curve
(AUC) statistic from Information Retrieval to directly com-
pare ROC curves. The area under an ROC curve of detector
A estimates the conditional probability

AUC(A) ≈ Pr (SPEA(y1) > SPEA(y2)) ,

given anomalous and normal random link volume vectors
y1 and y2. The ideal detector has an AUC of 1, while the
random predictor achieves an AUC of 0.5.

5.3 Single Period & Boiling Frog Poisoning
We evaluate the effectiveness of our attacker strategies us-

ing weeks 20 and 21 from the Abilene dataset to simulate
the Single-Training Period attacks. The PCA algorithm is
trained on the week 20 traffic matrix poisoned by the at-
tacker; we then inject attacks during week 21 to see how
often the attacker can evade detection. We select these par-
ticular weeks because PCA achieved the lowest FNRs on
these during testing.

To test the Boiling Frog attack we simulate traffic ma-
trix data, inspired by methods used in [16]. Our simula-
tions present multiple weeks of stationary data to the ad-
versary. While such data is unrealistic in practice, it is an
easy case on which PCA should succeed. Anomaly detec-
tion under non-stationary conditions is difficult due to the
learner’s inability to distinguish between benign data drift,
and adversarial poisoning. Demonstrated flaws of PCA in
the stationary case constitute strong results. We decided to
validate the Boiling Frog attack on a synthesized multi-week
dataset, because the 6 month Abilene dataset of [33] proved
to be too non-stationary for PCA to consistently operate
well from one week to the next. It is unclear whether the
non-stationarity observed in this data is prevalent in general
or whether it is an artifact of the dataset.

We synthesize a multi-week set of OD flow traffic matrices,
with stationarity on the inter-week level. We use a three
step generative procedure to model each OD flow separately.
First the underlying daily cycle of the OD flow f time series
is modeled by a sinusoidal approximation. Then the times at
which the flow is experiencing an anomaly are modeled by a
Binomial arrival process with inter-arrival times distributed
according to the geometric distribution. Finally Gaussian
white noise is added to the base sinusoidal model during
times of benign OD flow traffic; and exponential traffic is
added to the base model during times of anomalous traffic.
We next describe the process of fitting this generative model
to the week 20 Abilene data.

In step 1, we capture the underlying cyclic trends via
Fourier basis functions. We use sinusoids of periods of 7,
5 and 3 days, and 24, 12, 6, 3 and 1.5 hours, as well as

a constant function [16]. For each OD flow, we find the
Fourier coefficients from the flow’s projection onto this basis.
We next remove the portion of the traffic modeled by this
Fourier forecaster and model the remaining residual traf-
fic via two processes. One is a noise process modeled by
a zero-mean Gaussian to capture short-term benign traffic
variance. The second process models volume anomalies as
being exponentially distributed.

In step 2 we select which of the two noise processes is used
at each time interval. After computing our model’s residuals
(the difference between the observed and predicted traffic)
we note the smallest negative residual value −m. We as-
sume that residuals in the interval [−m, m] correspond to
benign traffic and that residuals exceeding m correspond to
traffic anomalies. We separate benign variation and anoma-
lies in this way since these effects behave quite differently.
(This is an approximation but it works reasonably well for
most OD flows.) Negative residual traffic reflects benign
variance, and since we assume that benign residuals have a
zero-mean distribution, it follows that such residuals should
lie within the interval [−m, m]. Upon classifying residual
traffic as benign or anomalous we then model anomaly ar-
rival times as a Bernoulli arrival process. Under this model
the inter-anomaly arrival times become geometrically dis-
tributed. Since we consider only spatial PCA methods, the
placement of anomalies is of secondary importance.

For the final step, the parameters for the two residual
traffic volume and the inter-anomaly arrival processes are
inferred from the residual traffic using the Maximum Like-
lihood estimates of the Gaussian’s variance and exponential
and geometric rates respectively. Positive goodness-of-fit re-
sults (Q-Q plots not shown) have been obtained for mouse,
medium and elephant flows.

In our simulations, we constrain all link volumes to respect
the link capacities in the Abilene network: 10gbps for all but
one link that operates at one fourth of this rate. We cap chaff
that would cause traffic to exceed the link capacities.

6. POISONING EFFECTIVENESS

6.1 Single Training Period Poisoning
We evaluate the effectiveness of our three data poison-

ing schemes in Single-Training Period attacks. During the
testing week, the attacker launches a DoS attack in each 5
minute time window. The results of these attacks are dis-
played in Fig. 3. Although our poisoning schemes focus on
adding variance, the mean of the OD flow being poisoned in-
creases as well, increasing the means of all links over which
the OD flow traverses. The x-axis in Fig. 3 indicates the
relative increase in the mean rate. We average over all ex-
periments (i.e., over all OD flows).

As expected the increase in evasion success is smallest
for the uninformed strategy, intermediate for the locally-
informed scheme, and largest for the globally-informed poi-
soning scheme. A locally-informed attacker can use the
Add-More-If-Bigger scheme to raise his evasion success to
28% from the baseline FNR of 3.67% via a 10% average in-
crease in the mean link rates due to chaff. Although 28%
may not be viewed as a high likelihood of evasion, the at-
tacker success rate is nearly 8 times larger than the unpoi-
soned PCA model’s rate. This number represents an average
over attacks launched in each 5 minute window, so the at-
tacker could simply retry multiple times. With our Globally-

Informed with a 10% average increase in the mean link rates,
the unpoisoned FNR is raised by a factor of 10 to 38% and
eventually to over 90%. The big difference between the per-
formance of the locally-informed and globally-informed at-
tacker is intuitive to understand. Recall that the globally-
informed attacker knows a great deal more (traffic on all
links, and future traffic levels) than the locally-informed
one (who only knows the traffic status of a single ingress
link). We consider the locally-informed adversary to have
succeeded quite well with only a small view of the network.
An adversary is unlikely to be able to acquire, in practice,
the capabilities used in the globally-informed poisoning at-
tack. Moreover, adding 30% chaff, in order to obtain a 90%
evasion success is dangerous in that the poisoning activity
itself is likely to be detected. Therefore Add-More-If-Bigger
presents a nice trade-off, from the adversary’s point of view,
in terms of poisoning effectiveness, and attacker capabilities
and risks. We therefore use Add-More-If-Bigger, the locally-
informed strategy, for many of the remaining experiments.

We evaluate the PCA detection algorithm on both anoma-
lous and normal data, as described in Section 5.2, produc-
ing the Receiver Operating Characteristic (ROC) curves dis-
played in Fig. 4. We produce a ROC curve (as shown) by
first training a PCA model on the unpoisoned data from
week 20. We next evaluate the algorithm when trained on
data poisoned by Add-More-If-Bigger.

To validate PCA-based detection on poisoned training
data, we poison exactly one flow at a time as dictated by
the threat model. Thus, for relative chaff volumes ranging
from 5% to 50%, Add-More-If-Bigger chaff is added to each
flow separately to construct 144 separate training sets and
144 corresponding ROC curves for the given level of poison-
ing. The poisoned curves in Fig. 4 display the averages of
these ROC curves (i.e., the average TPR over the 144 flows
for each FPR).

We see that the poisoning scheme can throw off the bal-
ance between false positives and false negatives of the PCA
detector: The detection and false alarm rates drop together
rapidly as the level of chaff is increased. At 10% relative
chaff volume performance degrades significantly from the
ideal ROC curve (lines from (0, 0) to (0, 1) to (1, 1)) and at
20% the PCA’s mean ROC curve is already close to that of
blind randomized prediction (the y = x line with 0.5 AUC).

6.2 Multi-Training Period Poisoning
We now evaluate the effectiveness of the Boiling Frog strat-

egy, that contaminates the training data over multiple train-
ing periods. In Fig. 5 we plot the FNRs against the poisoning
duration for the PCA detector. We examine four different
poisoning schedules with growth rates g as 1.01, 1.02, 1.05
and 1.15 respectively. The goal of the schedule is to increase
the attacked links’ average traffic by a factor of g from week
to week. The attack strength parameter θ (see Sec. 3) is
chosen to achieve this goal. We see that the FNR dramati-
cally increases for all four schedules as the poison duration
increases. With a 15% growth rate the FNR is increased to
more than 70% from 3.67% over 3 weeks of poisoning; even
with a 5% growth rate the FNR is increased to 50% over 3
weeks. Thus Boiling Frog attacks are effective even when
the amount of poisoned data increases rather slowly.

Recall that the two methods are retrained every week us-
ing the data collected from the previous week. However, the
data from the previous week has been filtered by the de-

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Single Poisoning Period: Evading PCA

Mean chaff volume

E
va

si
on

 s
uc

ce
ss

 (
F

N
R

)

0% 10% 20% 30% 40% 50%

Uninformed
Locally−informed
Globally−informed

Figure 3: Evasion success of PCA under Single-Training

Period poisoning attacks using 3 chaff methods.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Single Poisoning Period: ROC Curves

False Alarm Rate (FPR)

D
oS

 D
et

ec
tio

n
R

at
e

(T
P

R
)

PCA − unpoisoned
PCA − 5% chaff
PCA − 10% chaff
PCA − 20% chaff
PCA − 50% chaff
Random detector
Q−statistic
Laplace threshold

Figure 4: ROC curves of PCA under Single-Training Pe-

riod poisoning attacks.

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Boiling Frog Poisoning: Evading PCA

Attack duration (weeks)

E
va

si
on

 s
uc

ce
ss

 (
av

er
ag

e
te

st
 F

N
R

)

Growth rates

1.01
1.02
1.05
1.15

Figure 5: Evasion success of PCA under Boiling Frog

poisoning attacks.

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Boiling Frog Poisoning: PCA Rejections

Week

P
ro

po
rt

io
n

of
 c

ha
ff

re
je

ct
ed

Growth rates

1.01
1.02
1.05
1.15

Figure 6: Chaff rejection rates of PCA under poisoning

attacks shown in Fig. 5.

tector itself. At any time point flagged as anomalous, the
training data is thrown out. Fig. 6 shows the proportion of
chaff rejected each week by PCA (chaff rejection rate) for
the Boiling Frog strategy. The three slower schedules enjoy
a relatively small constant rejection rate close to 5%. The
15% schedule begins with a relatively high rejection rate,
but after a month sufficient amounts of poisoned traffic mis-
train PCA after which point the rates drop to the level of

the slower schedules. We conclude that the Boiling Frog
strategy with a moderate growth rate of 2–5% can signifi-
cantly poison PCA, dramatically increasing its FNR while
still going unnoticed by the detector.

By comparing Figs. 3 and 5, we observe that in order
to raise the FNR to 50%, an increase in mean traffic of
roughly 18% for the Single-Training Period attack is needed,
whereas in the Boiling Frog attack the same thing can be

achieved with only a 5% average traffic increase spread across
3 weeks.

7. DEFENSE PERFORMANCE
We now assess how antidote performs in the face of two

types of poisoning attacks, one that lasts a single training
period, and one that lasts for multiple training periods. For
those 2 time horizons, we use the Add-More-If-Bigger poi-
soning scheme to select how much chaff to add at each point
in time. We compare its performance to the original PCA-
subspace method.

7.1 Single Training Period Poisoning
In Fig. 7 we illustrate antidote’s FNR for various levels

of average poisoning that occur in a Single-Training Period
attack. We can compare this to Fig. 3 that shows the same
metric for the original PCA solution. We see here that the
evasion success of the attack is dramatically reduced. For
any particular level of chaff, the evasion success rate is ap-
proximately cut in half. Interestingly, the most effective
poisoning scheme on PCA, Globally-Informed, is the most
ineffective poisoning scheme in the face of our robust PCA
solution. We believe the reason for this is that our Globally-
Informed scheme was designed in an approximately opti-
mal fashion to circumvent PCA. Now that the detector has
changed, Globally-Informed is no longer optimized for the
right defense. For this detector, Random remains equally
effective because constant shifts in a large subset of the data
create a bimodality that is difficult for any subspace method
to reconcile. This effect is still muted compared to the dra-
matic success of locally-informed methods on the original
detector. Further, constant shift poisoning creates unnatu-
ral traffic patterns that we believe can be detected; we leave
the investigation of such techniques to future work.

Since poisoning activities distort a detector, it will affect
not only the FNRs but also the false positives. To explore
this trade-off, we use ROC curves in Fig. 8 for both anti-

dote and PCA. For comparison purposes, we include cases
when the training data is both unpoisoned and poisoned.
For the poisoned training scenario, each point on the curve is
the average over 144 poisoning scenarios in which the train-
ing data is poisoned along one of the 144 possible flows.
While antidote performs very similarly to PCA on unpoi-
soned training data, PCA significantly underperforms an-

tidote under poisoning attacks. With a moderate mean
chaff volume of 10%, antidote’s average ROC curve re-
mains close to optimal while PCA’s curve collapses towards
the y = x curve of the blind random detector. This means
that the normal balance between FNRs and false positives is
completely thrown off with PCA; however antidote contin-
ues to retain a good operating point for these two common
performance measures. In summary, when we consider the
two performance measures of FNRs and FPRs, we give up
insignificant performance shifts when using antidote when
no poisoning events occur, yet we see enormous performance
gains for both metrics when poisoning attacks do occur.

Given Figs. 7 and 8 alone, it is conceivable that antidote

outperforms PCA only on average, and not on all flows tar-
geted for poisoning. In place of plotting all 144 poisoned
ROC curves, we display the areas under these curves (AUC)
for the two detection methods in Fig. 9 under 10% chaff. Not
only is average performance much better for robust PCA,
but it enjoys better performance for more flows and by a

large amount. We note that although PCA performs slightly
better for some flows, we see that in fact both methods have
excellent detection performance (because their AUCs are
close to 1), and hence the distinction between the two is
insignificant, for those specific flows.

Fig. 10 plots the mean AUC (averaged from the 144 ROC
curves’ AUCs where flows are poisoned separately) achieved
by the detectors, as the level of chaff is intensified. Notice
that antidote behaves similarly to PCA under no chaff
conditions, yet its performance quickly becomes superior as
the amount of contamination grows. In fact, it does not
take much poisoning for antidote to exhibit much stronger
performance. With PCA’s performance drop, it starts ap-
proaching a random detector (equivalent to 0.5 AUC), for
amounts of chaff exceeding 20%. In these last few figures,
we have seen the FNR and FPR performance as it varies
across flows and quantity of poisoning. In all cases, it is
clear that antidote is an effective defense and dramati-
cally outperforms a solution that was not designed to be
robust. We believe this evidence indicates that the robust
techniques are a promising avenue for SML algorithms used
for security applications.

7.2 Multi-Training Period Poisoning
We now evaluate effectiveness of antidote against the

Boiling Frog strategy, that occurs over multiple successive
training periods. In Fig. 11 we see the FNRs for antidote

with the four different poisoning schedules. We observe two
interesting behaviors. First, for the two most stealthy poi-
soning strategies (1.01 and 1.02), antidote shows remark-
able resistance in that the evasion success increases very
slowly, e.g., after 10 training periods it is still below 20%.
This is in stark contrast to PCA (see Fig. 5) in which, for
example, after 10 weeks, the evasion success is over 50% for
the 1.02 poisoning growth rate scenario. Second, under PCA
the evasion success keeps rising over time. However with an-

tidote and the heavier poisoning strategies, we see that the
evasion success actually starts to decrease after some time.
The reason for this is that antidote has started rejecting
so much of the training data, that the poisoning strategy
starts to lose its effectiveness.

To look more closely at this behavior we show the pro-
portion of chaff rejected by antidote under multi-training
period poisoning episodes in Fig. 12. We see that the two
slower schedules almost have a constant rejection rate close
to 9%, which is higher than that of original PCA (which is
close to 5%). For the faster poisoning growth schedules (5%
and 15%) we observe that antidote rejects an increasing
amount of the poison data. This reflects a good target be-
havior for any robust detector—to reject more training data
as the contamination grows. From these figures we conclude
that the combination of techniques we use in antidote,
namely a PCA-based detector designed with robust disper-
sion goals combined with a Laplace-based cutoff threshold,
is very effective at maintaining a good balance between false
negative and false positive rates throughout a variety of poi-
soning scenarios (different amounts of poisoning, on different
OD flows, and on different time horizons).

8. CONCLUSIONS
We studied the effects of multiple poisoning strategies

while varying the amount of information available to the at-
tacker and the time horizon over which the poisoning occurs.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Single Poisoning Period: Evading ANTIDOTE

Mean chaff volume

E
va

si
on

 s
uc

ce
ss

 (
F

N
R

)

0% 10% 20% 30% 40% 50%

Uninformed
Locally−informed
Globally−informed

Figure 7: Evasion success of antidote under Single-

Training Period poisoning attacks using 3 chaff methods.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Single Poisoning Period: ROC Curves

False Alarm Rate (FPR)

D
oS

 D
et

ec
tio

n
R

at
e

(T
P

R
)

PCA − unpoisoned
PCA − 10% chaff
ANTIDOTE − unpoisoned
ANTIDOTE − 10% chaff
Random detector
Q−statistic
Laplace threshold

Figure 8: ROC curves of antidote under Single-Training

Period poisoning attacks.

●

●

●

●
●●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

0.6 0.7 0.8 0.9 1.0

0.
6

0.
7

0.
8

0.
9

1.
0

Single Poisoning Period: Flows' AUCs at 10% Chaff

PCA AUCs

A
N

T
ID

O
T

E
 A

U
C

s

● Single flow AUC
Mean AUC
Iso−performance

Figure 9: The 144 AUCs from the poisoned ROC curves

for each possible target flow and their mean.

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Single Poisoning Period: Mean AUCs

Mean chaff volume

M
ea

n
A

U
C

0% 10% 20% 30% 40% 50%

PCA
ANTIDOTE
Random detector

Figure 10: The mean AUCs versus mean chaff levels.

We demonstrated that the PCA-subspace method can be
easily compromised (often dramatically) under all of these
poisoning scenarios. From the attacker’s point of view, we
illustrate that simple strategies can be effective and conclude
that it is not worth the risk or extra amount of work for the
attacker to engage in attempts at optimal strategies. We
demonstrated that our antidote solution is robust to all of
these attacks in that it does not allow poisoning attacks to

shift the false positive and false negative rates in any signif-
icant way. We showed that antidote provides robustness
for nearly all the ingress POP to egress POP flows in a back-
bone network, rejects much of the contaminated data, and
continues to operate as a DoS defense even in the face of
poisoning.

In the future, we plan to adapt our scheme to defend
against poisoning strategies that enable DDoS evasion, and

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Boiling Frog Poisoning: Evading ANTIDOTE

Attack duration (weeks)

E
va

si
on

 s
uc

ce
ss

 (
av

er
ag

e
te

st
 F

N
R

) Growth rates

1.01
1.02
1.05
1.15

Figure 11: Evasion success of antidote under Boiling Frog

poisoning attacks.

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Boiling Frog Poisoning: ANTIDOTE Rejections

Week

P
ro

po
rt

io
n

of
 c

ha
ff

re
je

ct
ed

Growth rates

1.01
1.02
1.05
1.15

Figure 12: Chaff rejection rates of antidote under Boil-

ing Frog poisoning attacks.

intend to validate our findings on other traffic matrix datasets
(e.g., GÉANT or enterprise networks). It is also interesting
to consider using robust statistical methods for other detec-
tors such as general anomography [33] techniques. We plan
to go beyond rejection of poisoning data, and study methods
for identifying the responsible flow for a poisoning attack by
looking at correlations among links that are rejecting chaff.

9. ACKNOWLEDGEMENTS
We would like to thank Peter Bartlett, Fuching Jack Chi,

Fernando Silveira, Anthony Tran and the anonymous re-
viewers for their helpful feedback on this project.

We gratefully acknowledge the support of our sponsors.
This work was supported in part by TRUST (Team for
Research in Ubiquitous Secure Technology), which receives
support from the National Science Foundation (NSF award
#CCF-0424422) and AFOSR (#FA9550-06-1-0244); RAD
Lab, which receives support from California state MICRO
grants (#06-148 and #07-012); DETERlab (cyber-DEfense
Technology Experimental Research laboratory), which re-
ceives support from DHS HSARPA (#022412) and AFOSR
(#FA9550-07-1-0501); NSF award #DMS-0707060; and the
following organizations: Amazon, BT, Cisco, DoCoMo USA
Labs, EADS, ESCHER, Facebook, Google, HP, IBM, iCAST,
Intel, Microsoft, NetApp, ORNL, Pirelli, Qualcomm, Sun,
Symantec, TCS, Telecom Italia, United Technologies, and
VMware. The opinions expressed in this paper are solely
those of the authors and do not necessarily reflect the opin-
ions of any funding agency, the State of California, or the
U.S. government.

10. REFERENCES
[1] P. Bahl, R.Chandra, A. Greenberg, S. Kandula,

D. Maltz, and M. Zhang. Towards highly reliable

enterprise network services via inference of multi-level
dependencies. In Proc. SIGCOMM, 2007.

[2] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and
J. D. Tygar. Can machine learning be secure? In Proc.
ASIACCS, 2006.

[3] D. Brauckhoff, K. Salamatian, and M. May. Applying
PCA for Traffic Anomaly Detection: Problems and
Solutions. In Proc. INFOCOM, 2009.

[4] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning,
and Games. Cambridge University Press, 2006.

[5] Y. Cheng, M. Afanasyev, P. Verkaik, P. Benko,
J. Chiang, A. Snoeren, S. Savage, and G. Voelker.
Automating cross-layer diagnosis of enterprise wireless
networks. In Proc. SIGCOMM, 2007.

[6] C. Croux, P. Filzmoser, and M. R. Oliveira.
Algorithms for projection-pursuit robust principal
component analysis. Chemometrics and Intelligent
Laboratory Systems, 87(2), 2007.

[7] C. Croux and A. Ruiz-Gazen. High breakdown
estimators for principal components: the
projection-pursuit approach revisited. J. Multivariate
Analysis, 95(1), 2005.

[8] N. Dalvi, P. Domingos, Mausam, S. Sanghai, and
D. Verma. Adversarial classification. In Proc. ACM
KDD, 2004.

[9] S. J. Devlin, R. Gnanadesikan, and J. R. Kettenring.
Robust estimation of dispersion matrices and principal
components. J. American Statistical Association, 76,
1981.

[10] P. Fogla and W. Lee. Evading network anomaly
detection systems: Formal reasoning and practical
techniques. In Proc. ACM CCS, 2006.

[11] O. Hössjer and C. Croux. Generalizing univariate
signed rank statistics for testing and estimating a

multivariate location parameter. J. Nonparametric
Statistics, 4, 1995.

[12] L. Huang, X. Nguyen, M. Garofalakis, M. Jordan,
A. Joseph, and N. Taft. In-network PCA and anomaly
detection. In Proc. NIPS ’06, 2007.

[13] J. E. Jackson and G. S. Mudholkar. Control
procedures for residuals associated with principal
component analysis. Technometrics, 21(3), 1979.

[14] S. Kandula, R. Chandra, and D. Katabi. What’s going
on? learning communication rules in edge networks. In
Proc. SIGCOMM, 2008.

[15] A. Lakhina, M. Crovella, and C. Diot.
Characterization of network-wide anomalies in traffic
flows. In Proc. IMC, 2004.

[16] A. Lakhina, M. Crovella, and C. Diot. Diagnosing
network-wide traffic anomalies. In Proc. SIGCOMM,
2004.

[17] A. Lakhina, M. Crovella, and C. Diot. Detecting
distributed attacks using network-wide flow traffic. In
Proc. FloCon 2005 Analysis Workshop, 2005.

[18] A. Lakhina, M. Crovella, and C. Diot. Mining
anomalies using traffic feature distributions. In Proc.
SIGCOMM, 2005.

[19] G. Li and Z. Chen. Projection-pursuit approach to
robust dispersion matrices and principal components:
primary theory and Monte Carlo. J. American
Statistical Association, 80, 1985.

[20] X. Li, F. Bian, M. Crovella, C. Diot, R. Govindan,
G. Iannaccone, and A. Lakhina. Detection and
identification of network anomalies using sketch
subspaces. In Proc. IMC, 2006.

[21] X. Li, F. Bian, H. Zhang, C. Diot, R. Govindan,
W. Hong, and C. Iannaccone. MIND: A distributed
multidimensional indexing for network diagnosis. In
Proc. INFOCOM, 2006.

[22] D. Lowd and C. Meek. Adversarial learning. In Proc.
ACM KDD, 2005.

[23] R. Maronna. Principal components and orthogonal
regression based on robust scales. Technometrics,
47(3), 2005.

[24] B. Nelson, M. Barreno, F. J. Chi, A. D. Joseph,
B. I. P. Rubinstein, U. Saini, C. Sutton, J. D. Tygar,
and K. Xia. Exploiting machine learning to subvert
your spam filter. In Proc. LEET, 2008.

[25] J. Newsome, B. Karp, and D. Song. Polygraph:
Automatically generating signatures for polymorphic
worms. In Proc. IEEE Symp. Security and Privacy,
2005.

[26] J. Newsome, B. Karp, and D. Song. Paragraph:
Thwarting signature learning by training maliciously.
In Proc. RAID, 2006.

[27] A. Ramachandran, N. Feamster, and S. Vempala.
Filtering spam with behavioral blacklisting. In Proc.
ACM CCS, 2007.

[28] H. Ringberg, A. Soule, J. Rexford, and C. Diot.
Sensitivity of PCA for traffic anomaly detection. In
Proc. SIGMETRICS, 2007.

[29] B. I. P. Rubinstein, B. Nelson, L. Huang, A. D.
Joseph, S. Lau, S. Rao, N. Taft, and J. D. Tygar.
Stealthy poisoning attacks on PCA-based anomaly
detectors. In Proc. ACM SIGMETRICS, 2009.

Extended abstract.

[30] A. Soule, K. Salamatian, and N. Taft. Combining
filtering and statistical methods for anomaly
detection. In Proc. IMC, 2005.

[31] S. Venkataraman, A. Blum, and D. Song. Limits of
learning-based signature generation with adversaries.
In Proc. NDSS, 2008.

[32] G. L. Wittel and S. F. Wu. On attacking statistical
spam filters. In Proc. CEAS, 2004.

[33] Y. Zhang, Z. Ge, A. Greenberg, and M. Roughan.
Network anomography. In Proc. IMC, 2005.

