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Location and Stability of the High-Gain Equilibria 
of Nonlinear Neural Networks 

Mathukumalli Vidyasagar, Fellow, IEEE 

Abstract-This paper analyzes the number, location, and sta- 
bility behavior of the equilibria of arbitrary nonlinear neural 
networks without resorting to energy arguments based on as- 
sumptions of symmetric interactions or no self-interactions. The 
class of networks studied consists of very general continuous- 
time continuous-state (CTCS) networks that contain the standard 
Hopfield network as a special case. The emphasis is on the case 
where the slopes of the sigmoidal nonlinearities become larger 
and larger, i.e., the high-guin limit. The following results are 
proved: Let H = (0,l)” and H = [0,1]” denote the open 
and closed n-dimensional hypercubes, respectively, on which the 
neural network evolves, and let I denote the (constant) vector of 
external inputs. Then, as the neural sigmoid characteristics be- 
come steeper and steeper, it is shown that the following statements 
are true for all I except for those belonging to a set of measure 
zero. 1) There are only finitely many equilibria in any compact 
subset of H. If there are no self-interactions, then these equilibria 
cannot be exponentially stable, and under mild conditions they 
are in fact unstable. If the network has symmetric (nonlinear) 
interactions, whether or not it has self-interactions, then the 
stable manifolds of all these equilibria have the same dimension, 
which can be computed explicitly. If the network also has no self- 
interactions, then all of these equilibria are unstable. 2) There are 
only finitely many equilibria in any face of H. If there are no self- 
interactions, then there are no equilibria in an edge of H. If the 
network has symmetric interactions, then the stable manifolds 
of equilibria in parallel faces of H have the same dimension, 
which can be computed explicitly. If the network also has no self- 
interactions, then all equilibria in the faces of H are unstable. 3) 
A systematic procedure is given for determining which corners 
of H contain equilibria, and it is shown that all equilibria in 
the corners of H are asymptotically stable. One corollary of the 
above results is that the standard Hopfield network can have 
asymptotically stable equilibria only in the corners of H, and 
trajectories starting at almost all initial conditions approach the 
corners of H. It is important to note that the proofs here are 
not based on energy arguments. As a result, these results are 
“hardy” in the sense that they continue to hold even if the network 
dynamics are slightly perturbed. 

I. INTRODUCTION 
ecently there has been a great deal of interest in artificial R neural networks, especially those of the Hopfield type. 

Two types of Hopfield networks are widely studied. Discrete- 
time discrete-state (DTDS) networks are described by 
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where n is the number of neurons; Kt is the state of neuron i 
at time t ,  and equals either 0 or 1; Zi is the (constant) external 
input to neuron i ;  and t ; j  is the interconnection weight. Here 
the “sat” function is defined by 

0, i f x S 0 ,  
1, if x > 0. sat(z) = 

Such networks are studied by Hopfield [l]. He defines the 
energy function as 

1 

L J 

where V = [VI ...Vn]‘ E (0, l}” is the state vector of the 
neural network. He then shows that if tii = 0 V i  (no self- 
interactions) and t i j  = t j i  Vi ,  j (symmetric interactions), and 
i f  the neural states are updated asynchronously, then 

Ed(Vt+l) 5 Ed(Vt) (1.4) 

In other words, the energy is nonincreasing as a function 
of time. Hence, in a finite number of time steps, the neural 
state vector V t  will reach a “one-flip minimum,’’ i.e., a vector 
VO E (0, l}” with the property that 

E(V0) 5 E ( V )  whenever H(V,Vo) = 1 (1.5) 

where H(V, VO) denotes the Hamming distance between V and 
Vo, i.e., the number of components where V and Vo differ. 

The second class of neural networks that has been studied 
consists of continuous-time, continuous-state (CTCS) net- 
works’ described by 

n 

where n, is the number of neurons; vi is the neural current 
and ui is the neural voltage; Ii is the external current input 
to the ith neuron, Ci is the membrane capacitance, and Ri 
is the neural resistance; gi is the characteristic of the ith 
neuron, X is a scaling parameter, and t ; j  is the interconnection 
weight. The function gi : 5R + (0 , l )  is a so-called sigmoidal 
nonlinearity. In other words, gi is continuously differentiable, 
strictly increasing, Si(.) + 0 as 5 + -00, and gi(z) + 1 as 
z + CO. The role of the constant A is to scale the input to the 

’ The other two possible classes of networks-continuous-time, discrete- 
state networks, and discrete-time continuous-state networks-have not re- 
ceived much attention. 
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sigmoidal nonlinearites. Note that, as X + 00, the function network description (1.6) can be rewritten as - 
i H g;(Xu) “approaches” the “sat” function of (1.2) in some 
loose sense. 

Hopfield [2] studies such networks, under the assumptions 
that 1) t;; = 0 for all i (no self-interactions), and 2)  t i j  = t j i  

for all i, j (symmetric interactions). He defines the energy 
function 

(1.7) 

Note that, as the scaling parameter X approaches infinity, 
the energy function E, approaches the energy function Ed. 
Hopfield argues that, for this reason, networks of the form 
(1.6) can also be used to minimize quadratic functions of the 
form (1.3) over the Boolean set {O,l}n, provided that the 
scale factor X is sufficiently large. The dynamics of networks 
of the form (1.6) are further analyzed in [3] and [4]. In [3], it 
is shown that &(V) 5 0 for all V, and that &(V) < 0 
if V is not equilibrium. On this basis, it is concluded in 
[3] that the network is totally stable, i.e., that every solution 
trajectory approaches an equilibrium. Strictly speaking, the 
argument in [3] in incomplete. In order to make it complete, 
it is necessary to show in addition that no solution trajectory 
escapes to infinity in the u-space. This is established in [4]. 
Thus the results of [3] and [4] mean that, in the case where 
the interactions are symmetric, the neural network does not 
exhibit any nontrivial periodic solutions. 

Neural networks of the form (1.1) or (1.6) are claimed to 
be extremely versatile and powerful. In [5], and [6], it is 
claimed that several important problems, such as the Traveling 
Salesman Problem, analog-to-digital conversion, and threshold 
decision making, can be solved using such networks. 

In a practical implementation of a neural network of the 
form (1.6), two difficulties can arise. The first difficulty is that 
the scaling constant X need not be the same for all neurons. 
Thus instead of (1.6), one can have 

”‘,v.- 2 - ga(X,uz) i = 1,. . . , n. (1.8) 

The consequences of this are not serious. In fact, it is only 
necessary to modify the energy function of (1.7) by replacing 
X by Xi; that is, 

r 1 

(1.9) 

With this modification, the arguments of [3], and [4] continue 
to apply, and the neural network is totally stable. The second 
difficulty is that it is unrealistic to assume that the interactions 
are symmetric, since this often requires guaranteeing that 
two physical quantities (such as resistances or the gains of 
operational amplifiers) are exactly equal. The consequences of 
even slight asymmetries in the interactions are disastrous to 
the theory of [3], and [4]. If t ; j  = t j ;  for all i, j ,  then the 

C;U; = - d E C / ~ v i ,  i = 1 , .  ‘ .  ,n. (1.10) 

However, if t i j  # tj; for even a single pair ( z , j ) ,  then (1.10) is 
no longer true, and it does not matter how small the asymmetry 
Itij - tj;( is. In essence, the theory of [3], and [4] is based 
on the relationship (l.lO), and hence cannot be modified to 
account for asymmetric interactions. As of now, there is very 
little theory to analyze the behavior of networks of the form 
(1.6) in the case of asymmetric interactions. 

The objective of the present paper is to analyze the number, 
location, and stability behavior of neural networks described 
by (1.6), without the assumptions of no self-interactions and 
symmetric interactions. It turns out however that the method 
of analysis used here is not limited to neural networks with 
linear interconnections. To exploit this feature, the object of 
study in this paper is the neural network described by 

1 
CiU; = - -U; Ri + &(V)  + I; 

‘U; = g;(Xu;) i = 1,.  . . , n (1.11) 

where C,, R,, us, w,, I ,  are the same as in (1.6), V = 
[ul . . .v,It,  and g2 : (0, 1)” 4 93 is some function rep- 
resenting the effects of the interconnections amongst the 
neurons; g2 : 93 + ( 0 , l )  is a sigmoidal function, and X is 
a scaling parameter, as described earlier. The assumptions on 
the functions ‘Icfz are stated in the next section, but they are 
very simple and natural, and include the Hopfield networks 
of (1.6) as a special case. Hence all the results derived here 
are applicable to Hopfield networks but apply as well to a far 
larger class. In particular, since the results derived here are 
not based on energy-type arguments, they apply to systems of 
the form (1.6) even when the interconnection matrix T is not 
symmetric, but is only “nearly” symmetric. 

Note that, in the system description ( l . l l ) ,  it is assumed that 
the same scaling factor X appears in all the sigmoidal charac- 
teristics. Strictly speaking, this is not realistic; as mentioned 
earlier, it would be more realistic to assume a relationship of 
the form (1.8). However, it turns out that this assumption is 
not crucial to the contents of the paper. The only reason for 
making it is to simplify notation. Section VI11 describes how 
the arguments in the paper can be modified to cover the more 
general description (1.8). 

The following results are proved in the paper: Consider 
(1.1 1) as evolving on the open n-dimensional hypercube 
H = ( 0 , l ) ”  in the “V-space,” and let I = [I1 . . . , I t  
denote the external input vector. Then, as X + 00 so that 
the sigmoid characteristic become steeper and steeper, the 
following statements are true for all I except for those be- 
longing to a set of measure zero. l )  There are only finitely 
many equilibria in any compact subset of H .  If there are no 
self-interactions, then these equilibria cannot be exponentially 
stable, and under mild conditions they are in fact unstable. If 
the network has symmetric (nonlinear) interactions, whether 
or not it has self-interactions, then the stable manifolds of 
all these equilibria have the same dimension, which can 
be computed explicitly. If the network also has no self- 
interactions, then all these equilibria are unstable. 2) There 
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are only finitely many equilibria in any face of H .  If there are 
no self-interactions, then there are no equilibria in any edge of 
H .  If the network has symmetric interactions, then the stable 
manifold of equilibria in parallel faces of H have the same 
dimension, which can be computed explicitly. If the network 
also has no self-interactions, then all equilibria in the faces 
of H are unstable. A corollary of these results is that, in the 
standard Hopfield-type network, there can be asymptotically 
stable equilibria only at the corners of H ,  and trajectories 
starting at almost all initial conditions approach the comers 
of B. 3)  A systematic procedure is given for determining 
which comers of H contain equilibria, and it is shown that 
all equilibria in the corners of H are asymptotically stable. 
It is important to note that the proofs here are not based on 
energy arguments. As a result, these results are “hardy” in the 
sense that they continue to hold even if the network dynamics 
are slightly perturbed. 

(NO): There exists a finite constant p such that 

Since H is a precompact subset of %“ (i.e., its closure is 
a compact set), Condition (NO) is quite mild. In fact, (2.3) is 
satisfied if each & has a C1 extension to 

(NI) (No Self-lnteractions): Condition (NO) is true, and in 
addition, 

= [0,1]”. 

This says that $; is independent of v i ,  but it does not in any 

(N2) (Symmetrical Interactions): The function $q has the 
way limit the nature of the dependence of I)z on v j ,  j # i .  

form 

11. PRELIMINARIES 
In this section, the various assumptions made throughout 

the paper are briefly summarized. 

the sigmoid function 
The input-output relationship of the ith neuron is given by where $i : % -+ 9, Oi : -+ 9 are Continuo~slY 

differentiable and strictly increasing, and t i j  are real numbers 
with 

(2.6) t . .  - t .. vi = gz(Xu2) (2.1) 
a3 - 3 z ,  vi,$ 

where gi is given sigmoid function and X is a scaling constant. 

following. 
The only assumptions made on the sigmoid function are the In addition, there exists a finite Constant /L such that 

A. Assumptions on the Sigmoid Nonlinearities 

The gi (z) is continuously differentiable, strictly increasing, 
and gi(x) + 1 as z -+ 03, Si(%) -+ 0 as z -+ -00. 

Furthermore, zg:(x) -+ 0 as 1x1 -+ 00. 

The assumptions about gi are quite standard. The assump- 
tion about g: are almost a consequence of the fact that gi(z) 
has a definite limit as 1x1 -+ 00. Since the function ~ / I C  is not 
integrable over any infinite interval, it follows that 

Si($) -+ 1 as z -+ 00 + liminfzg;(z) = 0 as z -+ CO 

(2.2) 

and similarly as IC -+ -00. So all we have done is to 
replace “lim inf” by “lim.” Note that the commonly used 
sigmoid function 1/( 1 + e-z) satisfies these assumptions. 
As X -+ 00, the sigmoid becomes steeper and steeper and 
eventually “approaches” the “sat” function of (1.2). Note that 
each neuron can have a different switching function, but for 
simplicity it is assumed that all neurons have the same scaling 
constant. This assumption is not essential-see Section VI11 
for a discussion of how this assumption can be relaxed. 

B. Assumptions on the Interconnection Nonlinearities 

At various stages, we impose a variety of conditions on 
the functions I)i in (1.11). Naturally, the more structure we 
impose on I)i, the more conclusions we are able to draw. But 
it is interesting to note that some conclusions can be drawn 
with virtually no assumptions. 

Finally, the matrix T = [ t i j ]  is hyperbolic; i.e., T has no 
eigenvalues with zero real part. 

Note that (N2) implies (NO) but is independent of (Nl). One 
can think of networks satisfying (N2) as generalized Hopfield- 
type networks, whereby each neuronal current v j  is first passed 
through a nonlinearity O j ,  the resulting signals are weighed by 
t i j  and then summed, and finally the weighted sum is fed into 
another nonlinearity q5i. It is clear that by taking both Oi and 
q5i to be identity maps, one recovers the standard Hopfield 
model (1.6). 

(N3) (Symmetric Interactions Plus): Condition (N2) is true. 
In addition, all principal submatrices2 of T of size 2 x 2 or 
larger are hyperbolic, i.e. none of their eigenvalues has a zero 
real part. 

All of the matrices proposed by Tank and Hopfield satisfy 
these assumptions. Note that, if the interconnection matrix T 
has zero diagonal elements, then the assumption of hyperbol- 
icity implies that each principal submatrix of T of dimension 
2 x 2 or larger has at least one eigenvalue with positive real 
part. This is because the trace of a matrix is equal to the sum 
of the eigenvalues. Thus if the trace of T is zero, and it has 
no eigenvalues on the imaginary axis, then it must have some 

‘Recall that a submatrix of an n x n matrix T is obtained by choosing two 
nonempty subsets J ,  K 2 { 1, . . . , n},  and forming the matrix consisting of 
all elements ( t 3 k ) ,  j E J ,  k E I<. A principal submatrix of T is obtained 
when J = K .  Note that a principal submatrix is necessarily square. Moreover, 
if T is symmetric, so are all principal submatrices of T. 

1 
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eigenvalues with positive real part and others with negative U - Y  
real part. This is true whether or not T is symmetric. 1.2 ba b 

Define H to be the open hypercube (0, l)", and H to be the 
closed hypercube [0, 11". The symbol b denotes the binary set 
(0, l}, and b" denotes the set of n-dimensional binary vectors. 
Note that the set b" consists precisely of the 2" corners of the 
hypercube H. The faces of the hypercube H consist precisely 
of those vectors x E n with the property that xi E b for some 
but not all values of i. In other words, a face of is a set 
of the form 

1 8 (h) 
o.l 

'A 

o,4 

{ X E H : X ~ E ~ V Z E ~ , X ; ~ ( O , ~ ) V ~ E J }  (2.8) 
-6 -4  -2 0 1 4 6 

-0.2 

where I, J is a nontrivial partition of the set { 1, . . . , n}. 
Among other things, we are interested in the location of 

the equilibria of (1.11) as the sigmoid gain X approaches 00. 

Fig. 1. 

Three types of equilibria are identified. 1.2, 

If V E is an equilibrium and U; E ( 0 , l )  Vz, then the 
equilibrium is said to be in the interior of H. 
If all components of V approach either 0 or 1 as X -+ 00, 

then the equilibrium is said to be in a comer of H .  
If some components of V approach 0 or 1 as X -+ 00 

while others approach some value in (0, l ) ,  then the 
equilibrium is said to be in a face of I?. 
section is concluded by recalling a few definitions [7].  

Consider a differential equation 

x = f(x) 

1 

0.8 

0.6 

0.4 

where x E H and f : H -+ %" is continuously differentiable. 
Then a vector x, E H is called an equilibrium of (2.9) if 
f(x,) = 0. Now define 

A =  [z] 
x = x e  

(2.10) 

Then the equilibrium x, is said to be hyperbolic if the Jacobian 
matrix A has no eigenvalues with zero real part, i.e., if 
the matrix A is also hyperbolic. Let m denote the number 
of eigenvalues of a hyperbolic matrix A with positive real 
part; then A has n - m eigenvalues with negative real part. 
The ordered pair (m,n - m) is called the signature of the 
(hyperbolic) equilibrium x, . 

111. MOTIVATION: SINGLE-NEURON CASE 

Much of what happens in a neural network as the neuron 
characteristics become steeper and steeper can be understood 
by studying the behavior of (1.6) when n = 1. In this case, 
the network dynamics are described by 

-6 -4 -2 0 4 6 

Fig. 2. 

So the equilibria of this network are at the solutions of 

U 

Q 
- = b g ( X u )  + y. (3.3) 

Fig. 1 shows where the solutions of this equation can lie as 
X -+ cc when b > 0, while Fig. 2 does the same when b < 0. 
These figures show that as X + 00, there can be two types of 
equilibria. First, those where ueq approaches a finite number, 
and veq approaches 0 if ueq < 0 and 1 if ueq > 0; these 
types of equilibria are labelled as type A in Fig. 1 and 2. 
Second, those where ueq -+ 0 but ueq approaches a number 
strictly between 0 and 1; this type of equilibrium is labeled 
as type B in Fig. 1. In Section VI we will see that, in the 
case of networks containing multiple neurons, it is possible 
for some components of ueq to approach a nonzero value 
while the remaining components approach zero; in such a case, 
some components of 'ueq approach 0 or 1 while the remaining 
components approach a value strictly between 0 and 1. 

1v. EQUILIBRIA IN THE INTERIOR OF H 
iL = - U / Q  + bg(Xu)  + y (3.1) 

where To analyze the equilibria of ( l . l l ) ,  define 
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C =  Diag{C1,...,Cn} R=Diag{R1, . . . ,Rn}  . Proposition 4.2: Suppose the function 9 satisfies the no 
self-interactions assumption (Nl), and that all functions in 
(2.5) are twice continuously differentiable. Let S be a compact 
subset of H, and let I E !Rn. Then, as X -+ CO, the equilibria 

(4'2) 

Define maps G : Rn -+ H and 9 : H --f Rn by 
of (4.4) inside S,  if any, are not exponentially stable. 

Proof: Suppose p E S satisfies 9 ( p )  = -I, and let J,,, 
denote the Jacobian matrix of a map M. Then, as X + CO, 

the network has an equilibrium approaching p .  Let us linearize 
the network around this equilibrium. For this purpose, define 
U = Xu. Then, as X -+ CO, we have that U, -+ G-'(p). Now 

[G(41; = Si(U2) [W)l; = Ilti(V), 
(4.3) i =  l , . . . , n  . 

Then the network equations (1.11) can be rewritten com- d 
pactly as du. 

- [-A-'u + C - l 9 ( V )  + C-lI] = - X-lA-' + C-lJq 

. [G(G)]JG(G). (4.8) 
U = -A-'u + C p 1 [ 9 ( V )  + I ]  V = G(Xu) (4.4) 

where it should be obvious that 
As X -+ CO, the first term approaches zero, and we are left 
with 

U = [u1.. .uJ v = [ V I . .  .VJ I = [ I l . .  .IJ. c- lJ ip(p)J~[G-l (p)]  = B,say. (4.9) 

Now, by the no self-interactions assumption, it follows that the 
diagonal elements of JQ are all zero, from which it follows 
that b;; = 0 Vi .  Therefore the sum of the eigenvalues of B, 
equal to the trace of B, is also zero. Thus there are only two 
possibilities. 

(4.5) 

Now the equilibria of (4.4) are the solutions of 

A-lu = C-19[G(Xu)] + C-l I .  (4.6) 

In this section we are interested in the equilibria of (4.4) 
in the interior of H .  If all components of V are to stay away 
from the limits 0 and 1 as X 4 CO, then U must approach 
0, while Xu approaches some well-defined limit. Substituting 
u = 0 in (4.6) and noting that V = G(Xu) gives 

9 ( V )  = -I .  (4.7) 

The question is: How many solutions does (4.7) have and 
what is their nature? 

Proposition 4.1: Let S be any compact subset of H. Then, 
for all I E Rqn except those belonging to a set of measure 
zero, the network (4.4) has only finitely many equilibria in S 
as X + CO. 

Proof: The result is virtually a direct consequence of 
Sard's Theorem [8]. For the convenience of the reader, the 
relevant definitions and the theorem itself are summarized. A 
vector p E H is called a criticalpoint of the differentiable map 
9 if the Jacobian matrix & ( p )  = [89/8V](p)  is singular; 
otherwise it is called a regular point. A vector q E !Rn is 
called a regular value of the map 9 if every point in the 
preimage 9 - ' ( q )  is a regular point; otherwise, q is called a 
critical value. Note that if q is a regular value of 9, then 
every point in the set Q - l ( q )  is isolated; i.e., every point 
p E 9 - ' ( q )  has a neighborhood that does not contain any 
other point of 9 - ' ( q ) .  This is a ready consequence of the fact 
that the Jacobian matrix of 9 evaluated at p is nonsingular. 
Now a standard compactness argument shows that if q is a 
regular value of 9, then any compact subset S c H can 
contain at most a finite number of points 9 - ' ( p ) ,  i.e., at most 
a finite number of solutions of the equation 9 ( p )  = q. Now 
Sard's theorem [8] says, quite simply, that the set of critical 
values of a differentiable map has measure zero. 

1) B has at least one eigenvalue with positive real part, in 

2) All of eigenvalues of B have zero real parts. In this case, 

Although it cannot be stated as a theorem, one can see that 
case 2) is quite unlikely. It is much more likely that B has at 
least one eigenvalue with positive real part, in which case any 
equilibria that stay in the interior of H as X -+ CO are unstable. 
This observation perhaps sheds light on why it is useful to 
prohibit neural networks from having self-interactions. 

Proposition 4.3: Suppose the function 9 satisfies assump- 
tion (N2) and let S be any compact subset of H. Let I E Rn. 
Then, as X -+ CO, the equilibria of (4.4) that remain inside 
S are all hyperbolic. Moreover, the dimensions of the stable 
manifolds of all these equilibria are all the same, and equal the 
number of negative eigenvalues of the interconnection matrix 
T. If 9 satisfies Assumption (Nl) as well as (N2), then all 
equilibria inside S are unstable. 

Proof: Suppose p E S satisfies 9 ( p )  = I, and linearize 
(4.4) around the equilibrium G-l(p). Define maps @ : !Rn -+ 

Rn and 0 : H -+ Rn in the obvious way [cf. (2.5)]. Now, as 
in the proof of Proposition 4.2, it follows that as X -+ CO, the 
quantity fi approaches G-'(p). Let us compute the matrix B 
of (4.9), noting that in the present case 

which case the equilibrium is unstable. 

the equilibrium is not exponentially stable. 

9 ( V )  = @[TO(V)].  (4.10) 

Hence 

J*(V) = J*[TO(V)]TJ@(V). (4.11) 

Substituting from (4.11) into (4.9) shows that the matrix B 
has the form 

B = PTQ (4.12) 
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where P and Q are diagonal matrices with positive entries. 
Now it is a well-known result (see e.g., [9, p. 2971) that if M 
is any nonsingular matrix, then T and MtTM have the same 
signature, i.e., the same number of positive, zero, and negative 
 eigenvalue^.^ Next, note that P and Q commute, since they 
are both diagonal. Define D = P1/’, S = Q112, and note that 
both D and S are also diagonal with positive entries, and that 
D and S commute. Therefore, 

B = PTQ = S-lDIDSTSD]D-lS (4.13) 

is similar to W = DSTSD, and as a consequence both B 
and W have the same eigenvalues. In turn W has the same 
signature as T .  Hence each equilibrium of (4.4) inside S is 
hyperbolic, and the desired conclusion follows. Finally, if 9 
also satisfies Assumption (Nl), then t;i = 0 Vz. This, plus 
the fact that T is hyperbolic, implies that T has at least one 
positive eigenvalue. Hence all equilibria inside S are unstable. 

The various neural networks proposed by Tank and Hopfield 
have the feature that the interconnection matrix T is hyperbolic 
and has zero diagonal elements. Hence T has at least one 
positive eigenvalue. Thus Proposition 4.3 shows that in such 
neural networks almost all trajectories move away from the 
interior of the hypercube H. 

It is important to note that Propositions 4.1-4.3 remain 
valid even if the dynamics of the neural network are slightly 
perturbed. In particular, if Assumption (N2) is violated in the 
sense that the interconnection matrix T is not symmetric but 
is “close” to a symmetric matrix, then the matrix B = PTQ 
will not in general have only real eigenvalues, but B will 
continue to be hyperbolic and to have the same “signature” as 
T ,  in the sense that both B and T have the same number of 
eigenvalues with negative real part. 

Finally, suppose the network is of the type (1.6), i.e., it 
is a standard Hopfield-type network. This is a special cas 
of Assumption (N2) with all 4; and 8; set equal to the 
identity map. In this case the only thing we gain is that 
(4.7) has a unique solution, namely V = T- l I .  Hence, in 
Proposition 4.1, one can replace “a finite number” by “at most 
one.” 

Example 4.4: As an illustration of Proposition 4.1, consider 
the AID converter circuit of [6]. If we study the four-bit 
converter, then n = 4, and 

0 -2 -4 -8 0.5 

-4 -8 0 -32 
-8 -16 -32 0 

T =  [ 
(4.14) 

where x is the real number which is to be quantized. This neu- 
ral network evolves on the four-dimensional open hypercube 
H = (0, l)4. The objective of the example is to determine the 
range of values of x for which the network has an equilibrium 
in the interior or H ,  and to determine the dimensions of its 
stable and unstable manifolds. 

Taking the second question first, it is easy to verify that 
T has one negative and three positive eigenvalues. Thus 

3Recall that the eigenvalues of a symmetric matrix are real. 

if the network has an equilibrium in the interior of H, it 
is hyperbolic, and its stable and unstable manifolds have 
dimensions one and three, respectively. 

Next, we compute 

Veq = -T-’I = (4.15) -0.125 

It is routine to verify that the above vector belongs to the 
open hypercube H if and only if 6 < x < 9. Thus the neural 
network corresponding to the four-bit AJD converter has an 
equilibrium in the interior of H if and only if x belongs to 
the open interval (6,9). 

V. EQUILIBRIA IN THE CORNERS 

In this section, we study whether any equilibria of the 
system (4.4) approach the corners of the hypercube I? as the 
sigmoid gain X + 00. Recall that b denotes the Boolean set 
(0, I}, so that b” is the set corners of the closed hypercube I?. 
Now, since the differential equation (4.4) evolves on the open 
hypercube H, no vector in b” can actually be an equilibrium 
of this system. However, it is possible that, as X + 00, some 
equilibria of (4.4) approach a vector in b” 

Proposition 5.1: k t  e be an arbitrary vector in b”. Then an 
equilibrium of (4.4) approaches e as X + 00 if and only 
if e satisfies the parity condition, defined as follows: Let 
z = Q(e) + I. Then 

zi > 0 if e; = 1, z; < 0 if e; = 0, i = l , . . . , n .  

(5.1) 

Remark: Note that the parity condition can also be expressed 
as 

e i=sa t [Q(e)+I l i  i = l , . - . , n  (5.2) 

where the “sat” function is defined in (1.2). 
Proof: Put U = 0 in (4.4). This gives 

0 = -A-’u + C-’[Q(V) + I ]  (5-3) 

or 

U = AC-l[Q(V)+ I] = R [ 9 ( V ) +  I ] .  (5.4) 

Now, if we substitute G(Xu) = V = e E b”, then we get 

ueq = R[Q(e) + I ]  = Rz. (5.5) 

Thus as X + 00, V = G(Xueq) + e, provided 

(ueq); > 0 if ei = 1 (ueq); < 0 if e; = 0 

i =  I , . . .  ,n (5.6) 

But since ueq = Rz, (ueq); = R;z; for all i, and it follows that 
each component of ueq has the same sign as the corresponding 
component of z. Hence (5.6) is equivalent to (5.1). 

Proposition 5.1 is not very surprising, since it is very similar 
to a related result for (DTDS) networks of the form (1.1). A 
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binary vector e E b” is called a fixed point of the DTDS 
network (1.1) if 

Example 5.3: Consider again the four-bit A/D converter of 
Example 4.4. In [6] it is claimed that, if x is any real number 
and if the neural network is started from the zero initial state 
(i.e., ui = 0 for all i), then eventually the vector V will V o = e + V t = e  V t 2 o .  

In other words, e is a fixed point if, whenever the network 
starts in the state e,  it remains there. It is easy to see [lo, p. 71 
that e is a fixed point if and only if 

e; = sat[Te + IIi i = I, . .  . , n. (5.8) 

Now consider the associated continuous-time, continous-state 
(CTCS) network (1.6), where t i j  and Ii are the same as in 
(1.1). In this case, the interconnection function @(e) of (4.3) 
is given by 

@(e)  = T e  + I .  (5.9) 

Hence the parity condition (5.1) (or (5.2)) is precisely (5.8). 
The conclusion can be stated as follows: The CTCS network 
(1.6) has an equilibrium that approaches e E b” as A -+ 03 if 
and only if e is a fixed point of the associated DTDS network 

Proposition 5.2: Suppose that an equilibrium of (4.4) ap- 
proaches an element of b” as A 4 00. Then this equilibrium 
is exponentially stable for all sufficiently large A. 

Proof: Linearize (4.4) around the equilibrium ueq of 
(5.5). The Jacobian matrix of the right side of (4.4) at ueq is 

-A-’ + Jq(e)JG(Aueq)X. (5.10) 

By assumption, AJG(Au,~) -+ 0 as X 4 CO. Hence 
the Jacobian approaches -A-’ ,  whose eigenvalues are 
-l/al,. . . , -l/an. Since all of these eigenvalues are 
negative, it follows from the linearization theorem [ l l ,  p. 1881 
that the equilibrium ueq is exponentially stable. 

Remark: An informal, but informative, way to state the 
above proposition is: “All equilibria approaching the corners 
of are asymptotically stable.” 

Proposition 5.2 brings out an important difference between 
DTDS networks of the form (1.1) and CTCS networks of 
the form (1.6). In the case of DTDS networks, not all fixed 
points need be attractive. In fact, there are very few results 
concerning the attractivity of fixed points (see e.g., [12], [13], 
and [lo, pp. 38 et seq.]). In contrast, in the case of CTCS 
networks of the form (1.6) (or the more general (4.3)), every 
equilibrium near a comer of is exponentially stable. The 
difference arises because of the difference between the two 
models. Suppose e E 6” is a fixed point of the DTDS network 
(1.1). By previous remarks, it follows that an equilibrium of 
(1.6) approaches e as X -+ 00. Let ueq denote this equilibrium. 
Proposition 5.2 states that ueq is exponentially stable. This 
means that, if the initial state of the network (1.6) is suficiently 
close to ueq, then the resulting solution trajectory will converge 
to ueq. But in the case of the network (l . l) ,  the state vectors 
are discretized. Hence, in this network, there is no concept of 
“sufficiently small” perturbations of the initial state. The only 
possible perturbations of e are to change some of the 1’s to 
0’s or vice versa. With such a perturbation, it is quite possible 
that the resulting trajectory will not converge to e. 

(1.11). 

converge to the correct binary quantization of the real number 
x. However, it is observed in [6] that sometimes the vector 
V converges to a binary number which is either one less or 
one more than the correct quantization of 2. This problem is 
referred to in [6] as “hysteresis.” (See [6, Fig. 31.) Hence, for 
a given x there could be more than one stable equilibrium of 
the neural network, and depending on the initial condition the 
solution trajectory of the neural network could converge to an 
incorrect binary vector. If x is not kept fixed but is changed 
periodically, then it is necessary to “re-initialize” the network 
each time x is changed. Otherwise the solution trajectory will 
converge to an incorrect value. 

Since the neural network has four neurons, there are 24 = 16 
possible binary vectors, or 16 corners to the hypercube f?. By 
taking each comer in turn, it is possible to determine the values 
of x for which an equilibrium exists at that comer. This can 
be done using Proposition 5.1. By Proposition 5.2, each such 
equilibrium is asymptotically stable. Hence, for some initial 
values of U at least, the solution trajectory will converge to 
that corner. 

To illustrate that application of Proposition 5.1, consider the 
comer e = [ l o  1 lit. Note that the first component represents 
the lowest or least significant bit whereas the last component 
represents the highest bit. Hence this vector corresponds to the 
binary representation of the integer 13. To determine for what 
values of 2 an equilibrium exists near this corner, we compute 
the vector T e  + I, as per Proposition 5.1. This gives 

r12.51 r l i  

Now, in order for an equilibrium to exist near this comer, a 
necessary and sufficient condition is that 

- 1 2 . 5 + ~ > 0  - 2 8 + 2 ~ < 0  - 4 4 + 4 2 > 0  
-72 + 82 > 0. (5.12) 

Solving these inequalities shows that an equilibrium exists near 
this comer if and only if 

12.5 < x < 14. (5.13) 

The same process can be repeated at all 16 binary vectors, 
and corresponding intervals of x can be computed. This is 
displayed in Table I. (It is easy to show, using Proposition 5.1, 
that the set of values of x corresponding to a given binary 
vector is always an interval.) For ease of presentation, the 16 
binary vectors have been shown in terms of the corresponding 
decimal integer. 

From Table I one can see that, corresponding a given real 
number x for which it is desired to find a binary quantization, 
there can be as many as three distinct asymptotically stable 
equilibria. Moreover, some of these equilibria need not be any- 
where close to the correct binary quantization. For example, if 
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TABLE I 

e X e X e X 

0 x < 0.5 1 0 . 5 < z < 2  2 1 < z < 2 . 5  
3 2 . 5 < x < 5  4 2 < x < 4 . 5  5 4 . 5 < x < 6  
6 5 < x < 6 . 5  7 6 . 5 < x < 1 1  8 4 < x < 8 . 5  
9 8 . 5 < x < 1 0  10 9 < x < 1 0 . 5  11 1 0 . 5 < 1 < 1 3  
12 10 < x < 12.5 13 12.5 < x < 14 14 13 < x < 14.5 
15 14.5 < x 

2 = 4.3, then there are three asymptotically stable equilibria, at 
(in decimal representation) e = 3,4,8.  As per the convention 
of Tank and Hopfield, if 3.5 < 2 < 4.5, then the correct 
binary quantization is 4. Hence one would hope that the neural 
network would converge toward the comer e = 4 = [0 0 1 OIt. 
But since there are two other asymptotically stable equilibria, 
for suitable initial conditions the neural network will in fact 
converge toward the comers e = 3 or 8. If the network which 
should converge to 4, in fact converges to 3, then one can 
consider it as “hysteresis,” as mentioned in [6], since the 
difference between 3 and 4 is only one. But as Table I shows, 
it is possible for the network to converge to a comer that is at 
a (Euclidean) distance more than one from the correct value 
This phenomenon is not mentioned in [6]. Indeed, they do not 
offer any systematic procedure for identifying all attractive 
equilibria, as is done here. Similarly, if 2 = 10.3, then there 
are asymptotically stable equilibria at e = 7,10, and 11. Once 
again, for suitable initial conditions the network will converge 
to the comer 7 when it should converge to 10, and of course 
the distance between 7 and 10 is more than one. This brings up 
the question of whether there is an improved version of an A/D 
converter which does not exhibit such multiple asymptotically 
stable equilibria. The answer is “yes,” as shown in [14], and 

One final comment: Although the parity test of Proposition 
5.1 gives a systematic procedure for identifying all the equi- 
libria of a given neural network near the comers of H, the 
number of operations needed to apply the parity test of order 
2” where n is the number of neurons. Hence, as an analysis 
tool, the parity test is not very useful. However, it is very useful 
as a synthesis tool, i.e., as a method for constructing an neural 
network with equilibria near prescribed comers of a. For 
example, in [14] and [15], the parity test is used to construct 
an analog to digital converter neural network that has only 
a single, globally attractive equilibrium for almost all values 
of the input. Moreover, as stated in the remark following 
Proposition 5.1, the problem of constructing a CTCS network 
of the form (1.6) with equilibria near prescribed comers of H 
is mathematically equivalent to the problem of constructing 
a DTDS network of the form (1.1) with fixed points at the 
same comers. Hence, the known methods for achieving this 
in DTDS networks, e.g., [l] and (131, can also be used to 
construct CTCS networks. 

1151. 

VI. EQUILIBRIA IN THE FACES OF fi 
Thus far we have studied the existence of equilibria in 

the interior of H ,  and near the comers of H .  In this sec- 
tion, we complete the analysis by studying conditions under 

which there exist equilibria in the faces of H, i.e., equilibria 
where some components approach 0 or 1 while the remaining 
components remain bounded away from 0 and 1 as X + 00. 

We are searching for solutions to 

R-lu = @ ( e )  + I  = z (6.1) 

where some components of e belong to {0,1} while the 
remaining components belong to the open interval (0,l). 
Note that if some component of e belongs to (0 ,  I), then the 
corresponding component of ueq (and of z )  must be zero; 
otherwise g(Xu) + 0 or 1 as X + 00. 

Let us first define a few terms. Suppose 1 5 IC 5 n - 1, and 
let w = { T I ,  . 

{ e  E H : ei E (0,l)for i E r, ei E (0 ,  1)for i j$ n} = F 

, r k }  be a subset of { 1 , .  . , n}. Then the set 

(6.2) 

defines a face of the hypercube H of dimension IC. Once the set 
w is defined, there are 2n-k ways of choosing the components 
of e; ,  i 6 w. Each choice defines a distinct face of H, and 
these faces are said to be parallel. 

Now back to the problem of studying equilibria in the faces 
of B. Fix an integer k such that 1 5 IC 5 n - 1, as well 
as a subset w as above, and consider the problem of studying 
the equilibria in a corresponding &dimensional face F of H. 
By renumbering the indices if necessary, it can be assumed 
without loss of generality that the set r equals {l,...,IC}. 
So suppose a binary vector eb = [ ek+ l . . . e , I t  E bnPk is 
specified, and let F defined in (6.2) denote the corresponding 
face of H. Define 

e ,  = [el . . . ekI t  eb = [ek+l . . . e n ] t  (6.3) 

commensurately. Then, in partitioned and partition I, z and 
form, (6.1) becomes 

o k  = @,(ea ,  eb) + I, 
z b  = @b(ea, eb) + 1 6 .  

(6.4) 
(6.5) 

Proposition 6.1: Given an input I E 171” and a binary vector 
eb E bn-’, there exists an equilibrium of (4.4) approaching 
the face F as X + 00 if and only if the following statement 
is true: Equation (6.4) has a solution e ,  E (071)k, and the 
corresponding Z b  given by (6.5) satisfies the parity condition, 
namely 

> 0 if (ea); = I, (&,)i < 0 if = 0. (6.6) 

The proof is virtually the same as that of Proposition 5.1 
and is therefore omitted. 

Proposition 6.2: Fix eb E b”-’” and let F be the correspond- 
ing face of H defined in (6.2). Suppose S is a compact subset 
of F. Then, for all I E R” except for those belonging to a 
set of measure zero, there are only finitely many equilibria of 
(4.4) that approach S as X + 00. 

The proof is virtually the same as that of Proposition 4.1 
and is therefore omitted. 

Proposition 6.3: Suppose the function @ satisfies the no 
self-interactions assumption (Nl). Then, for all I E 171” except 



668 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 4, NO. 4, JULY 1993 

those belonging to a set of measure zero, no equilibrium of 
(4.4) approaches an edge of 8. 

Proof: An edge of is a face with k = 1. In this case, 
Assumption (Nl) implies that @(e,, ea) is independent of e,. 
Hence (6.4) reduces to 

0 = e,(eb) + I ,  (6.7) 

which can only be satisfied if I, = @,(ea). This defines a 
linear variety in Rn, which has measure zero. Now H has 
only finitely many edges, and a finite union of sets of measure 
zero one again has measure zero. 

Example 6.4: (Three-Bit A/D Converter) As an illustration 
of Proposition 6.2, consider the Tank and Hopfield AID con- 
verter circuit of [6], but this time with only three neurons, so 
that it does a three-bit quantization of a given real number. 
In this case, 

T =  [-: -4 -E -8 I:] I=-[ : ]  + [:I.. (6.8) 

Let 2 = 3.2; we show that it is possible to obtain a complete 
characterization of all equilibria of the neural network. 

First, compute 

V,, = -T-lI  = 0.425 . [ :::12J (6.9) 

Since V,, E (0, 1)3, there is indeed an equilibrium at this point 
as A -+ cm i.e., as the neural characteristics approach those of 
an ideal switch. Next, let us check for equilibria in the comers 
of H = [0, lI3. Using the procedure of Proposition 5.1 as 
illustrated in Example 5.2, one finds that there are (asymp- 
totically stable) equilibria only at e = [00 lIt = 4 and at 
e = [11 Olt = 3. Finally, let us check for solutions of (6.4) 
in the faces of 8. First, since all diagonal elements of T 
are zero, it follows from Proposition 6.3 that there are no 
equilibria along the edges of the cube 8. Next we try setting 
one component of e equal to zero and solving for the other 
two. If we set el = 0, then solving (6.4) gives 

(6.10) 

Thus it can be concluded that, as X + 00, there will be an 
equilibrium near V = [0 0.6 0.55It. Similarly it can be verified 
that there will be another equilibrium near [l 0.1 0.3It, and 
that these are the only equilibria along the faces of [0, lI3. 

Next, let us study the stability of equilibria in the faces of 8. 
Proposition 6.5: Suppose the function 9 satisfies Assump- 

tion (N3). Suppose 2 5 k 5 n - 1, and that T = { T I , .  + .  , T k }  

is a given subset of { 1 , .  , n}. Define T, to be the (n - k) x 
(n - k) principal submatrix of T given by 

T, = [ t i j , i , j  @ RI. (6.11) 

Let ea E bndk be chosen arbitrarily, and define F to be the 
corresponding face of given by (6.2). Let S be a compact 
subset of F. Then, as A -+ 00, any equilibria of (4.4) that 

of all such equilibria have the same dimension, and it equals 
the number of positive eigenvalues of T,. If 9 satisfies (Nl) as 
well as (N3), then all equilibria in the faces of 8 are unstable. 

Remark: Once the index set R is fixed, there are 2n-k 
different possible choices for the matrix eb. Proposition 6.5 
makes it clear that the equilibria in each of these faces, if any, 
have the same signature. To put it another way, equilibria in 
parallel faces have the same signature. 

Proof: For convenience, renumber the indices such that 
R = { l , . . . , k }  . Now define 

Then from (4.4) it follows that 

'kk = Ak'& = -hkA-'u -I- C-'hk{*[G(Xu)]  + I }  (6.13) 
(6.14) = -A-lur, + C-1Ak{9[G(AA,1Uk)] + I}. 

Here we have used the obvious fact that 

AkA- 'Ai l  = A-' (6.15) 

since all matrices are diagonal. Now let X + M and suppose 
an equilibrium e approaches S,  i.e., 

(6.16) 

Define 

U* = G-'(e). (6.17) 

Now linearize (4.4) around the equilibrium in uk-space. The 
Jacobian matrix is 

-A-' + C-l Ak J* [TO( e ) ] T J e  ( e )  JG (AA, ' U * )  

(6.18) 

Now consider separately the matrix 

M = Je(e)Jc(XA,lu*)XA,l. (6.19) 

This is a diagonal matrix; moreover 

mii = OI(ei)g:[ui*] for 1 5 i 5 k, (6.20) 

mii = O~(ei)Xg~[Aui*] -+ o 
for k +  15 i 5 n. 

as -+ cm, 

(6.21) 

Hence, as X -+ 00 

Ma 0 
M + [ o  01 (6.22) 

and the Jacobian matrix approaches 

where we use the obvious notation partitioning the matrices 
approach 5' are hyperbolic. Moreover, the unstable manifold A ,  C,  Je ,  and T .  Note that T,, is just the matrix T, defined 
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in (6.11). Now as X --f 00, the term A i 1  in top left corner 
becomes insignificant compared to the term 

XC;l(J~),Ta,M, = XW,say. (6.24) 

Thus the eigenvalues of the linearized system approach 

spec(XW) U spec(-A;’) (6.25) 

where “spec” denotes the set of eigenvalues of a matrix. Of 
course, the eigenvalues of -AY1 are just { - I / Q E + ~ ,  + . . , -1/ 
an}. Now one can show, just as in the proof of Proposition 4.3, 
that W has the same signature as T,, = T,. The result 
follows. Finally, if tii = 0 Vi ,  then T, has at least one positive 
eigenvalue, whence the equilibria in F are unstable. 

Corollary 6.6: Consider the neural network (4.4), where 
the interaction function Q has the form (2.5). Suppose all 
functions in (2.5) are twice continuously differentiable, and 
that the interconnection matrix T satisfies tii = OVZ. Under 
these conditions, the network can have exponentially stable 
equilibria only at the comers of H .  

Remark: Note that the class of networks covered by 
Corollary 6.6 includes the standard Hopfield model (1.6) as 
a special case. The corollary states that, merely by avoiding 
self-interactions, one can ensure that the network can have 
exponentially stable equilibria only at the corners of 8. This 
corollary sheds some light on the role played by the “no 
self-interaction” assumption on neural network dynamics. This 
result is important because the energy arguments of [3], and 
[4] require only the symmetric interactions assumption, and 
do not require the no self-interaction assumption. Thus a 
network with self-interactions is still totally stable, provided 
that the interactions are symmetric. But, in such a case, it 
is possible, for example, that all solution trajectories will 
converge to an exponential stable equilibrium in the interior 
of H .  However, if the network has no self-interactions, then 
there can be exponentially stable equilibria only at the comers 
of R, provided that the interactions are symmetric, or “nearly” 
so. The next corollary gives an even stronger result, but at the 
expense of more assumptions. 

Proof: The hypotheses ensure that the interaction func- 
tion @ satisfies the no self-interaction assumption (Nl). Hence, 
it follows from Proposition 4.2 that there cannot be any 
exponentially stable equilibria in the interior of a. Next, it 
follows from Proposition 6.3 that no equilibrium approaches 
an edge of H. Finally, suppose an equilibrium approaches 
a face of H, and denote it by ueq. Now U,, is exponentially 
stable if and only if the eigenvalues of the linearization around 
ueq all have negative real parts. From (6.25), if follows that 
these eigenvalues include those of the matrix X W .  However, 
from (6.24) it follows that the diagonal elements of W are all 
zero, since tii = 0 Vi ,  and the remaining matrices in (6.24) are 
all diagonal. Hence the sum of the eigenvalues of XW, which 
equals the trace of the matrix, is also zero. In particular, it is 
not possible for all of them to have negative real parts. 

Corollary 6.7: Consider the neural network (4.4), where the 
interaction function 9 satisfies Assumptions (Nl) and (N3). 
Then, as X -+ 00, all equilibria except those approaching the 
corners of H are unstable. Hence, trajectories starting from 

almost all initial conditions approach the comers of I?. In 
particular, this is true of Hopfield-type networks of the form 
(1.6). 

Example 6.8: Let us continue Example 6.4. The analysis 
previously carried out shows that there is an equilibrium 
at V,, = [0.34 0.425 0.4625It. Now the matrix T of (6.8) 
has one negative and two positive eigenvalue. Accordingly, 
from Proposition 4.1, this equilibrium has a stable manifold 
of dimension one and an unstable manifold of dimension two. 
Next, there are asymptotically stable equilibria at el = [0 0 lIt 
and e2 = [l 1 Olt.  Now consider equilibria in the faces. Letting 
T = (2.3) and assigning el = 0 leads to the equilibrium at 
VI = [0 0.6 0.55It, whereas assigning el = 1 leads to the 
equilibrium V2 = [l 0.1 0.3It. These equilibria are in opposite 
faces of the three-dimensional cube [0, lI3. Now 

(6.26) 0 -8 

The matrix has one positive eigenvalue. This shows that both 
VI and V2 have stable manifolds of dimension two and an 
unstable manifold of dimension one. 

The most important point to note about this example is 
that all of the above conclusions remain valid even if the 
interconnection matrix is perturbed slightly from its original 
symmetric value. Of course, the actual values of the various 
equilibria will change slightly in a continuous fashion, but the 
dimensions of the various stable and unstable manifolds will 
not change. 

VII. SPECIALIZED RESULTS 
Thus far the emphasis has been on general nonlinear neural 

networks. In the present section, some specialized results 
are presented €or Hopfield-type neural networks described 
by (1.6), where all the sigmoidal characteristics are identical 
(representing identical neurons). 

A. Rate of Convergence of Trajectories 

In this subsection some preliminary results are given about 
the rate at which the equilibria of the system (1.6) approach the 
comers of H ,  and the rate at which the solution trajectories 
approach the equilibria. 

Suppose e is a vector in b”, i.e., suppose e is a corner 
point of the hypercube H .  Then Proposition 5.1 states that the 
system (1.6) has an equilibrium approaching e if and only if 
the vector z = Te + I has the same “parity” as e. Thus in 
Proposition 5.1, only the signs of the various components of 
z are pertinent, and their magnitudes do not play any role in 
determining whether or not there exists an equilibrium near a 
particular comer. Now it is shown that the magnitudes of the 
components of z do determine the speed of convergence of the 
equilibrium to e as the sigmoid gain X + 00. 

To be specific, suppose all the neural characteristics are 
identical, and are given by 

,n. (7.1) 
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Suppose e E b" and that z = Te + I has the same parity as 
e .  In accordance with ( 5 3 ,  define 

ai 
Ci 

Ueqi = - z .  2 - - R.2. 2 z for Z = l , . . . ,  7 ~ .  (7.2) 

Now define 

Veq = G(Xueq) (7.3) 

and let X i. 00, i.e., let the sigmoid characteristics become 
steeper and steeper. 

Proposition 7.1: Let all symbols be as defined above. Then 

lim - 
A-W 1n)ej - weGl (ueGl' (7.4) 

Inlei - veqil Iueqil 

Proof: Suppose first that U ;  > 0, ei = 1 (by the parity 
condition). Then, as X + 03, we have 

Now suppose ui < 0, ei = 0. Then, as X + 03, we have 

In veqi = - In [ 1 + exp ( --Xueqi)] = - In [exp (-Xu,,i)] 

= XUeqi. (7.7) 

The relationship (7.4) now follows readily from (7.6) and (7.7). 
Proposition 7.1 address the issue of the rapidity with which 

Veq approaches the comer e as X -+ 00. Basically, the larger 
the value of Iueqil, the more rapidly veqi approaches ei. One 
can also explore the time behavior of the solution trajectories 
of (1.6) for a fixed "large" value of A. 

Proposition 7.2: Let all symbols be as defined earlier. Then 

(7.8) 
lnlvi(t) - veqil - - aj lim lim - 

A - + m t + c c  Inlvj(t) - veGJ ai ' 

Proof: Suppose X is "large" and that the initial condition 
u;(O) is "near" ueqi. Then it follows from (5.10) that 

ui(t)  z ueqi + [ui(O) - ueqi] exp(- t la i ) .  (7.9) 

Suppose ueqi > 0. Then, in analogy with (7.5), we have 

V i ( t )  = 
1 

z 1 - exp [-Xu,(t)] 

z I - exp x ueqi + ( u ~ ( o )  - ueqi)e-t/al 

= 1 - exp (~u,,i) . exp ~ ( u i ( 0 )  - ueq;)e-t/a'] 

1 + exp [-Xui(t)] 

I >  { [  
[ 

z 1 - exp (Xueqi) . [I + x(~;(o) - ueqi)e-t/a'] 

NN veqi - X exp (Xueqi)[ui(0) - ueqi] exp (-t/ai), (7.10) 

As t + 00 for a fixed A, the first term on the right side 
dominates the rest. A similar approximation applies when 
ueqi < 0. The desired result (7.8) now follows readily. 

Proposition 7.2 shows that, in the case where all neurons 
are identical (i.e., ai = a for all i), the trajectory in the 
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TABLE I1 

e 2 

[ 1 0 1 01' [0.9 -1.2 9.6 27.2It 
[ 0  1 1 O l t  [-1.1 0.8 5.6 -36.8It 
10 0 0 01' 1-3.1 -7.2 -18.4 11.2It 

V-space converges to the equilibrium at essentially the same 
rate in all components. 

Example 7.3: Consider again the four-bit AD converter of 
Examples 4.2 and 5.3. Suppose the input x equals, say, 5.4. In 
this case, from Table I, one sees that there are three equilibria, 
namely at e = [ l o  1 Olt = 5, [0 1 1 Olt = 6, and [0 0 0 lIt = 8. 
Table I1 shows the corresponding values of z = Te + I .  

From Table I1 one can see that, in two out of the three cases 
(in fact the two which represent the best digital approximations 
to the given input x), the components of z are smallest 
in magnitude corresponding to the least significant bits, and 
largest in magnitude corresponding to the most significant bits. 
Thus as the sigmoid nonlinearities become steeper and steeper 
(A + co), one would expect that the most significant bits 
to converge most rapidly to the "correct" values. The same 
phenomenon can be observed for almost all values of the input 
variable 2.  The details are routine and are left to the reader. 

B. Existence of Equilibria in the Corners 

Proposition 5.1 states that if the system (1.6) has any 
equilibria near the comers of H ,  then these are asymptotically 
stable. But, under certain circumstances, there might be no 
equilibria near the corners of H .  

First a positive result. 
Proposition 7.4: Suppose the interconnection matrix T sat- 

1) T is symmetric, and all of its diagonal elements are zero. 
2) Every principal submatrix of T of size 2 x 2 or larger, 

including T itself, is hyperbolic and has at least one 
positive eigenvalue. 

Under these conditions, for all inputs I except those belonging 
to a set of measure zero, there exists at least one binary vector 
e E b" such Te + I has the same parity as e. 

Proof: The assumptions ensure that the neural network 
exhibits total stability, i.e., every solution trajectory converges 
to an equilibrium [3]. Propositions 4.1, 6.1, and 6.2 show that 
there can be no asymptotically stable equilibria except near 
the comers of H ,  while Proposition 6.2 guarantees that there 
can only be a finite number of equilibria in the faces of R. 
All these facts plus total stability lead one to conclude that 
there must exist at least one asymptotically stable equilibrium 
near a corner of H .  By Proposition 5.1, this is equivalent to 
the parity condition being satisfied at some comer of H .  This 
is the desired conclusion. 

Now an example to show that Proposition 7.4 is not valid 
if the interconnection matrix T is perturbed. 

Example 7.5: Consider a two-neuron network with the in- 
terconnection matrix 

isfies the following conditions: 

(7.12) 

1 
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Then, applying Proposition 5.1, one can verify that if 

O < i l < ~  i 2 < - ~  (7.13) 

then none of the four vectors in b2 satisfies the parity condition. 
But by applying Proposition 6.2, one can see that there is an 
equilibrium near 

el  = - i1 e2 = 0. (7.14) 

To determine the signature of this equilibrium, let 

Z L ~  = gT1(el) m i l  = gi(u1) > 0. (7.15) 

Then, by (6.25), the eigenvalues of the linearized system 
around the equilibrium are asymptotically equal to 

{ - A w l ,  - 2 ) .  (7.16) 

Hence this equilibrium is asymptotically stable. 
The point of Proposition 7.4 and Example 7.5 is as follows: 

Under ideal conditions, there is (almost) always an asymptot- 
ically stable equilibrium near a corner of H .  Since the parity 
condition of Proposition 5.1 is just an algebraic relationship, 
it is easy to see that, for each fired input vector I, there is a 
small allowed perturbation such that there continues to exist an 
equilibrium near some corner of H .  But Example 7.5 shows 
that the order of the quantifiers cannot be interchanged: It is 
not true that there exists a small allowed perturbation for which 
there continues to exist an equilibrium near some comer of H. 

As a final comment, observe that the proof of Proposition 7.4 
is quite round-about and unsatisfactory. The parity condition 
involves only linear algebra, and as such one would expect 
to be able to find a proof of the proposition based purely on 
linear algebra. 

VIII. CONCLUSIONS 

In this paper we have given a complete analysis of the 
location and stability of the equilibria, in the high-gain limit, 
of arbitrary nonlinear neural networks. The class of net- 
works studied here is quite general and includes the standard 
Hopfield-type networks as a special case. The method of 
analysis does not depend on energy function arguments. As 
a result, the results presented here continue to hold even if the 
neural dynamics are slightly perturbed, in contrast with the 
results based on energy arguments. 

In this paper, it has been assumed solely for notational 
convenience that the scaling factor X is the same for all 
neurons; see (1.6). However, this assumption is not necessary 
in order to establish the results proved here. Consider the more 
general description (1.Q where each neuron has a separate 
scaling constant. Suppose these constants all approach infinity 
in such a way that they are all of the same order, i.e., suppose 
there exist positive constants CT and p such that 

o 5 X i / X j  5 p V i , j  E { l , . . . , n} .  (8.1) 

Then all the results of the paper remain valid. The only 
modification needed in the proofs is to replace the scalar X 
by the diagonal matrix 

A=diag(X1, . . . ,Xn} (8.2) 

in appropriate places. The details are easy and are left to the 
reader. To repeat, the point is that all results remain valid 
provided all scale factors are of the same order-they need 
not all have the same value. 

If a Hopfield-type neural network has symmetric intercon- 
nections, then [3] the network exhibits total stability, i.e., all 
solutions approach an equilibrium. This means, for example, 
that there are no nontrivial periodic solutions. This conclusion 
depends heavily on the ability to construct a total Lyapunov 
or energy function, and the energy function of [3] is only 
valid if the interconnection matrix is symmetric. Thus it is 
still an open question as to whether a network with “nearly” 
symmetric interconnections can exhibit limit cycles, and if so, 
under what conditions. 

Another issue that is as yet unresolved, even in the sym- 
metric interconnections case, is that of calculating (or at least 
estimating) the basin or domain of attraction of each asymptot- 
ically stable equilibrium, which we now know can only lie in 
the comers of the hypercube H if the interconnection matrix 
has zero diagonal elements. This is a topic for further research. 
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