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Reinforcement Learning

• Autonomous “agent” that interacts with an environment 
through a series of actions

• E.g., a robot trying to find its way through a maze

• Actions include turning and moving through the maze

• The agent earns rewards from the environment under certain 
(perhaps unknown) conditions

• The agent’s goal is to maximize the reward

• We say that the agent learns if, over time, it improves its 
performance
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Reinforcement Learning
• Often formalized (mathematically) as Markov Decision Processes 

(MDPs) or Partially Observable Markov Decision Processes 
(POMDPs)

• MDPs are described by series of states (state of the 
environment) and a collection of actions corresponding to each 
state (allowable actions that change the state of the 
environment)

• The next state depends (perhaps probabilistically) on only 
the current state and the chosen action

• Each state/action pair has an associated reward (possibly 
probabilistic)

• Markov chains are a simple form of MDP with only one action 
and no rewards
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MDPs

• Rewards can be positive or negative

• E.g., the robot might receive a small penalty each time it 
takes a step that does not reach the goal

• Objective of the learning process is to develop a policy (a way to 
choose actions given the current state) to maximize the reward

• Could be difficult to do as rewards may be delayed

• E.g., the robot receives a reward for reaching the end of 
the maze, but only penalties in-between
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MDPs

• Agent at step 𝑡𝑡

• Observes the state of the system

• Selects an action to perform

• Receives some reward

• This process is repeated indefinitely
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Policies

• A policy is the prescription by which the agent selects an action 
to perform

• Deterministic:  the agent observes the state of the system 
and chooses an action

• Stochastic:  the agent observes the state of the system and 
then selects an action, at random, from some probability 
distribution over possible actions
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Applications of MDPs

• Robot pathfinding

• Planning

• Elevator scheduling

• Manufacturing processes

• Network routing

• Game playing
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Formal Definition

• A deterministic MDP consists of the following

• A finite set of states 𝑆𝑆

• A set of allowable actions 𝐴𝐴𝑠𝑠 for each 𝑠𝑠 ∈ S

• A transition function 𝑇𝑇: 𝑆𝑆 × 𝐴𝐴 → 𝑆𝑆

• A reward function 𝑅𝑅: 𝑆𝑆 × 𝐴𝐴 → ℝ

• In the general case, 𝑇𝑇 and 𝑅𝑅 can be stochastic functions (we’ll 
worry about the deterministic case today)
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Formal Definition

• A stochastic MDP consists of the following

• A finite set of states 𝑆𝑆

• A set of allowable actions 𝐴𝐴𝑠𝑠 for each 𝑠𝑠 ∈ S

• A transition function 𝑇𝑇: 𝑆𝑆 × 𝐴𝐴 × 𝑆𝑆 → 0,1
• 𝑇𝑇(𝑠𝑠,𝑎𝑎, 𝑠𝑠′) is the probability of transitioning from 𝑠𝑠 to 𝑠𝑠𝑠

upon taking action 𝑎𝑎

• A reward function 𝑅𝑅: 𝑆𝑆 × 𝐴𝐴 × 𝑆𝑆 → ℝ
• 𝑅𝑅(𝑠𝑠,𝑎𝑎, 𝑠𝑠′) is the reward obtained by taking action 𝑎𝑎 in 

state 𝑠𝑠 and arriving in state 𝑠𝑠𝑠
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MDPs

13src:  Wikipedia



Cumulative Reward

• A policy is a mapping from states to actions, 𝜋𝜋: 𝑆𝑆 → 𝐴𝐴

• Policies can be deterministic or stochastic

• Let 𝑟𝑟(𝑡𝑡) denote the reward at time 𝑡𝑡

• The objective is to find a policy that maximizes the cumulative 
(discounted) reward

𝑟𝑟 0 + 𝛾𝛾𝑟𝑟 1 + 𝛾𝛾2𝑟𝑟 2 + ⋯

where 𝛾𝛾 ∈ (0,1) is a discount factor necessary to make the sum 
converge (also applied in economic contexts to prefer future 
rewards at a discounted rate)
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Value Function

• How can we evaluate the quality of policy 𝜋𝜋?
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Value Function

• How can we evaluate the quality of policy 𝜋𝜋?

• A value function 𝑉𝑉: 𝑆𝑆 → ℝ assigns a real number to each state

• A particular value function of interest will be the reward 
function

𝑉𝑉𝜋𝜋 𝑠𝑠 = �
𝑡𝑡=0

∞

𝛾𝛾𝑡𝑡𝑟𝑟(𝑡𝑡)

where the state at time 𝑡𝑡 is generated from the state at time 
𝑡𝑡 − 1 by applying the action dictated by the policy, 𝜋𝜋(𝑠𝑠𝑡𝑡−1)
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Technical Notes

• In the case that the rewards, transitions, policy, etc. are 
stochastic

• Replace the reward, 𝑟𝑟 𝑡𝑡 , with the expected reward under 
the policy

• An MDP has an absorbing state if there exists a state 𝑠𝑠 ∈ 𝑆𝑆 such 
that, with probability one, 𝑇𝑇 𝑠𝑠,𝑎𝑎 = 𝑠𝑠 for all 𝑎𝑎 ∈ 𝐴𝐴𝑠𝑠

• In this case, if the absorbing state can always be reached, the 
discount factor is unnecessary
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Objective

• Find a policy 𝜋𝜋∗: 𝑆𝑆 → 𝐴𝐴 such that

𝑉𝑉𝜋𝜋∗ 𝑠𝑠 ≥ 𝑉𝑉𝜋𝜋(𝑠𝑠)

for all 𝑠𝑠 ∈ 𝑆𝑆 and all policies 𝜋𝜋

• Any policy that satisfies this condition is called an optimal policy 
(may not be unique)

• There always exists an optimal policy

• How do we find it?
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Optimal Policies
• Can find an optimal policy via a dynamic programming approach

• Compute the optimal value, 𝑉𝑉𝜋𝜋∗(𝑠𝑠), for each state

• Greedily select the action that maximizes reward

• We can describe the optimal value via a recurrence relation

𝑉𝑉𝜋𝜋∗ 𝑠𝑠 = max
𝑎𝑎∈𝐴𝐴𝑠𝑠

𝑅𝑅 𝑠𝑠,𝑎𝑎 + 𝛾𝛾𝑉𝑉𝜋𝜋∗ 𝑇𝑇(𝑠𝑠,𝑎𝑎)

• This is one of the so-called Bellman equations

• Justifies the greedy strategy (all optimal strategies are 
“greedy” in this sense)
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Bellman Equations

𝑉𝑉𝜋𝜋 𝑠𝑠 = 𝑅𝑅 𝑠𝑠,𝜋𝜋(𝑠𝑠) + 𝛾𝛾𝑉𝑉𝜋𝜋 𝑇𝑇(𝑠𝑠,𝜋𝜋(𝑠𝑠))

𝑉𝑉𝜋𝜋∗ 𝑠𝑠 = max
𝑎𝑎∈𝐴𝐴𝑠𝑠

𝑅𝑅 𝑠𝑠,𝑎𝑎 + 𝛾𝛾𝑉𝑉𝜋𝜋∗ 𝑇𝑇(𝑠𝑠,𝑎𝑎)

• The first equation holds for any policy while the second must 
hold for any optimal policy

• Why?

20



The Greedy Strategy
• Given a value function 𝑉𝑉: 𝑆𝑆 → ℝ, we say that 𝜋𝜋 is greedy for 𝑉𝑉 if

𝜋𝜋 𝑠𝑠 ∈ arg max
𝑎𝑎

𝑅𝑅 𝑠𝑠,𝑎𝑎 + 𝛾𝛾𝑉𝑉 𝑇𝑇(𝑠𝑠,𝑎𝑎)

• If 𝜋𝜋 is not an optimal policy, then 𝜋𝜋𝑠 which is greedy for 𝑉𝑉𝜋𝜋 must 
satisfy 𝑉𝑉𝜋𝜋 𝑠𝑠 ≤ 𝑉𝑉𝜋𝜋′(𝑠𝑠) for all 𝑠𝑠 ∈ 𝑆𝑆

• This suggests that we can, starting from any policy, obtain a 
better policy (similar to coordinate ascent)

• Two questions:

• Does this process converge?

• If it converges, is the converged policy optimal?
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Value Iteration

• Choose an initial value function 𝑉𝑉0 (could be anything)

• Repeat until convergence

• For each 𝑠𝑠

𝑉𝑉𝑡𝑡+1 𝑠𝑠 = max
𝑎𝑎∈𝐴𝐴𝑠𝑠

𝑅𝑅 𝑠𝑠,𝑎𝑎 + 𝛾𝛾𝑉𝑉𝑡𝑡 𝑇𝑇(𝑠𝑠,𝑎𝑎)

• This process always converges to the optimal value, 𝑉𝑉∗, as long 
as 𝛾𝛾 ∈ (0,1),

𝑉𝑉𝑡𝑡+1 − 𝑉𝑉∗ ∞ ≤ 𝛾𝛾 𝑉𝑉𝑡𝑡 − 𝑉𝑉∗ ∞ ≤ 𝛾𝛾𝑡𝑡+1 𝑉𝑉0 − 𝑉𝑉∗ ∞
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Example (100 reward at goal, -1 for each step)

100 100 100 100 100 100 100

100 100 100 100 100 100 100

100 100 100 100 100 100

100 100 100 100 100 100 100

100 100 100 100 100 100 100

100 100 100 100 100 100 100

100 100 100 100 100 100 100 100

100 100 100 100 100 100 100 100
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Example (100 reward at goal, -1 for each step)

99 99 99 99 99 99 100

99 99 99 99 99 99 99

99 99 99 99 99 99

99 99 99 99 99 99 99

99 99 99 99 99 99 99

99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99
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Example (100 reward at goal, -1 for each step)

98 98 98 98 98 99 100

98 98 98 98 98 98 99

98 98 98 98 98 98

98 98 98 98 98 98 98

98 98 98 98 98 98 98

98 98 98 98 98 98 98

98 98 98 98 98 98 98 98

98 98 98 98 98 98 98 98
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Example (100 reward at goal, -1 for each step)

87 88 89 90 91 99 100

88 89 90 91 92 98 99

87 88 92 93 97 98

86 87 93 94 95 96 97

85 86 92 93 94 95 96

86 87 91 92 93 94 95

87 88 89 90 91 92 93 94

86 87 88 89 90 91 92 93
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Policy Iteration

• Choose an initial policy 𝜋𝜋0 (could be anything)

• Repeat until convergence

• Compute 𝑉𝑉𝜋𝜋𝑡𝑡

• Choose 𝜋𝜋𝑡𝑡+1 to be a greedy policy with respect to 𝑉𝑉𝜋𝜋𝑡𝑡

• This process always converges to an optimal policy
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Q-Values

• For learning, it will be useful to express value functions in terms 
of Q-value functions

• For a policy 𝜋𝜋, 𝑄𝑄𝜋𝜋: 𝑆𝑆 × 𝐴𝐴 → ℝ is defined to be the value of the 
policy 𝜋𝜋 starting from state 𝑠𝑠 where the first action is taken to be 
𝑎𝑎

𝑄𝑄𝜋𝜋 𝑠𝑠,𝑎𝑎 = 𝑅𝑅 𝑠𝑠,𝑎𝑎 + 𝛾𝛾𝑉𝑉𝜋𝜋(𝑇𝑇 𝑠𝑠,𝑎𝑎 )

• For any optimal policy 𝜋𝜋∗, 𝑉𝑉𝜋𝜋∗ 𝑠𝑠 = max
𝑎𝑎

𝑄𝑄𝜋𝜋∗ 𝑠𝑠,𝑎𝑎

• A policy 𝜋𝜋 is said to be greedy with respect to 𝑄𝑄 if

𝜋𝜋 𝑠𝑠 ∈ arg max
𝑎𝑎

𝑄𝑄 𝑠𝑠,𝑎𝑎
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Reinforcement Learning
• The above is simply the theory of MDPs

• We haven’t seen any “learning” yet

• All transition and reward functions were assumed to be 
known in advance

• The setting for reinforcement learning:

• The agent is the learner whose task is to maximize its 
respective rewards

• All rewards and transitions are unknown and must be 
learned through trial and error (key complication in the 
learning setting)
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Approaches to RL

• Learn the MDP first, then use value/policy iteration

• Learn only the values (don’t learn the MDP or explicitly model it)

• Can be advantageous in practice as MDPs can require a 
significant amount of storage to specify completely

• Hybrid approaches of learning and planning...
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Q-Learning

• Choose an initial state-value function 𝑄𝑄(𝑠𝑠,𝑎𝑎)

• Let 𝑠𝑠 be the initial state of the environment

• Repeat until convergence

• Choose an action 𝑎𝑎 for the current state 𝑠𝑠 based on 𝑄𝑄

• Take action 𝑎𝑎 and observe the reward 𝑟𝑟 and the new state 𝑠𝑠𝑠

• Set 𝑄𝑄 𝑠𝑠,𝑎𝑎 = 1 − 𝛼𝛼 𝑄𝑄 𝑠𝑠,𝑎𝑎 + 𝛼𝛼 𝑟𝑟 + 𝛾𝛾max
𝑎𝑎′

𝑄𝑄(𝑠𝑠𝑠,𝑎𝑎𝑠)

• Set 𝑠𝑠 = 𝑠𝑠𝑠
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Q-Learning

• Choose an initial state-value function 𝑄𝑄(𝑠𝑠,𝑎𝑎)

• Let 𝑠𝑠 be the initial state of the environment

• Repeat until convergence

• Choose an action 𝑎𝑎 for the current state 𝑠𝑠 based on 𝑄𝑄

• Take action 𝑎𝑎 and observe the reward 𝑟𝑟 and the new state 𝑠𝑠𝑠

• Set 𝑄𝑄 𝑠𝑠,𝑎𝑎 = 1 − 𝛼𝛼 𝑄𝑄 𝑠𝑠,𝑎𝑎 + 𝛼𝛼 𝑟𝑟 + 𝛾𝛾max
𝑎𝑎′

𝑄𝑄(𝑠𝑠𝑠,𝑎𝑎𝑠)

• Set 𝑠𝑠 = 𝑠𝑠𝑠
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𝛼𝛼 is called the learning rate



Q-Learning

• How should we pick an action to take based on 𝑄𝑄?
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Q-Learning

• How should we pick an action to take based on 𝑄𝑄?

• Shouldn’t always be greedy (we won’t explore much of the 
state space this way)

• Shouldn’t always be random (will take a long time to 
generate a good 𝑄𝑄)

• 𝜖𝜖-greedy strategy:  with some small probability choose a random 
action, otherwise select the greedy action
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Reinforcement Learning

• If the state space is large, these techniques are intractable (what 
if it is continuous?)

• Need different algorithms for this setting, but we already 
know a few!

• If the goal is to learn 𝑄𝑄(𝑠𝑠,𝑎𝑎), we could use techniques from 
supervised learning

• Generate a collection of noisy observations using Q-
learning

• Use a supervised learning algorithm (e.g., a neural 
network, 𝑘𝑘 − 𝑁𝑁𝑁𝑁, etc.) to approximate the 𝑄𝑄 function
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“Deep” Q-Learning

• If the 𝑄𝑄 function is approximated by a neural network, the 
correctness guarantees for 𝑄𝑄-learning no longer apply

• Learning might converge poorly or not at all

• In practice, experience replay has been shown to result in better 
learning performance

• The idea is that every time a state action pair is explored by 
the 𝑄𝑄-learner, that pair is added to a replay set with its 
corresponding reward and transition

• At each iteration, the replay set is sampled and the samples 
are used to update the weights of the neural network 
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Deep Q-Learning

• Choose an initial 𝜃𝜃 for 𝑄𝑄 ⋅,⋅ |𝜃𝜃 , an initial state 𝑠𝑠, and an empty replay set 𝑅𝑅

• Repeat until convergence

• Choose an action 𝑎𝑎 for the current state 𝑠𝑠 based on𝑄𝑄 𝑠𝑠,⋅ |𝜃𝜃

• Take action 𝑎𝑎 and observe the reward 𝑟𝑟 and the new state 𝑠𝑠𝑠, add 
(𝑠𝑠,𝑎𝑎, 𝑠𝑠′, 𝑟𝑟) to the replay set

• Sample 𝑆𝑆 ⊂ 𝑅𝑅

• For each element  in 𝑆𝑆, set 𝑦𝑦(𝑠𝑠,𝑎𝑎,𝑠𝑠′,𝑟𝑟) = 𝑟𝑟 + 𝛾𝛾max
𝑎𝑎′

𝑄𝑄(𝑠𝑠𝑠,𝑎𝑎′|𝜃𝜃)

• Perform one step of gradient descent starting at 𝜃𝜃 on 

∑ 𝑠𝑠,𝑎𝑎,𝑠𝑠′,𝑟𝑟 ∈𝑆𝑆 𝑄𝑄 𝑠𝑠,𝑎𝑎 𝜃𝜃 − 𝑦𝑦 𝑠𝑠,𝑎𝑎,𝑠𝑠′,𝑟𝑟
2

to yield 𝜃𝜃𝑠

• Set 𝜃𝜃 = 1 − 𝛼𝛼 𝜃𝜃 + 𝛼𝛼𝜃𝜃𝑠

• Set 𝑠𝑠 = 𝑠𝑠𝑠
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Deep Q-Learning Performance

38
Playing Atari with Deep Reinforcement Learning
[Minh et al.]



Deep Q-Learning Performance

39
Playing Atari with Deep Reinforcement Learning
[Minh et al.]
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