

Binary Classification / Perceptron

Nicholas Ruozzi University of Texas at Dallas

Supervised Learning

- Input: $(x^{(1)}, y^{(1)}), ..., (x^{(M)}, y^{(M)})$
 - $x^{(m)}$ is the m^{th} data item and $y^{(m)}$ is the m^{th} label
- Goal: find a function f such that $f(x^{(m)})$ is a "good approximation" to $y^{(m)}$
 - Can use it to predict y values for previously unseen x values

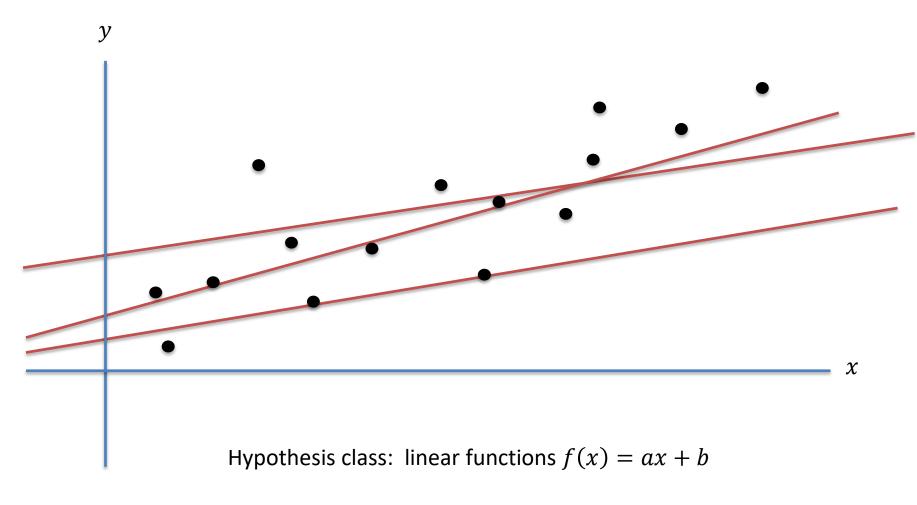
Supervised Learning

- Hypothesis space: set of allowable functions $f: X \to Y$
- Goal: find the "best" element of the hypothesis space
 - How do we measure the quality of f?

Examples of Supervised Learning

- Spam email detection
- Handwritten digit recognition
- Stock market prediction
- More?

Regression



How do we measure the quality of the approximation?

Linear Regression

 In typical regression applications, measure the fit using a squared loss function

$$L(f) = \frac{1}{M} \sum_{m} (f(x^{(m)}) - y^{(m)})^{2}$$

- Want to minimize the average loss on the training data
- For 2-D linear regression, the learning problem is then

$$\min_{a,b} \frac{1}{M} \sum_{m} (ax^{(m)} + b - y^{(m)})^2$$

• For an unseen data point, x, the learning algorithm predicts f(x)

Supervised Learning

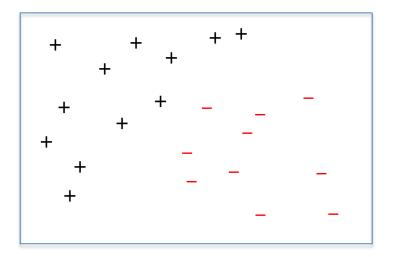
- Select a hypothesis space (elements of the space are represented by a collection of parameters)
- Choose a loss function (evaluates quality of the hypothesis as a function of its parameters)
- Minimize loss function using gradient descent (minimization over the parameters)
- Evaluate quality of the learned model using test data that is, data on which the model was not trained

- Input $(x^{(1)}, y^{(1)}), \dots, (x^{(M)}, y^{(M)})$ with $x^{(m)} \in \mathbb{R}^n$ and $y^{(m)} \in \{-1, +1\}$
- We can think of the observations as points in \mathbb{R}^n with an associated sign (either +/- corresponding to 0/1)
- An example with n=2

- Input $(x^{(1)}, y^{(1)}), \dots, (x^{(M)}, y^{(M)})$ with $x^{(m)} \in \mathbb{R}^n$ and $y^{(m)} \in \{-1, +1\}$
- We can think of the observations as points in \mathbb{R}^n with an associated sign (either +/- corresponding to 0/1)
- An example with n=2

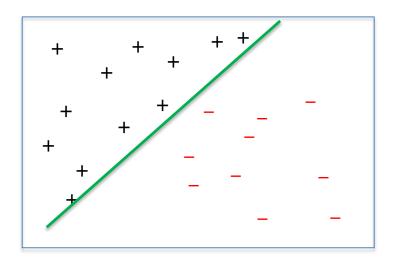
What is a good hypothesis space for this problem?

- Input $(x^{(1)}, y^{(1)}), \dots, (x^{(M)}, y^{(M)})$ with $x^{(m)} \in \mathbb{R}^n$ and $y^{(m)} \in \{-1, +1\}$
- We can think of the observations as points in \mathbb{R}^n with an associated sign (either +/- corresponding to 0/1)
- An example with n=2



What is a good hypothesis space for this problem?

- Input $(x^{(1)}, y^{(1)}), ..., (x^{(M)}, y^{(M)})$ with $x^{(m)} \in \mathbb{R}^n$ and $y^{(m)} \in \{-1, +1\}$
- We can think of the observations as points in \mathbb{R}^n with an associated sign (either +/- corresponding to 0/1)
- An example with n=2



that the observations are linearly separable

Linear Separators

• In n dimensions, a hyperplane is a solution to the equation

$$w^T x + b = 0$$

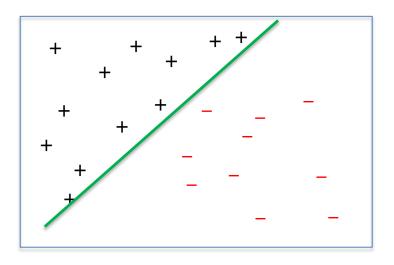
with
$$w \in \mathbb{R}^n$$
, $b \in \mathbb{R}$

• Hyperplanes divide \mathbb{R}^n into two distinct sets of points (called open halfspaces)

$$w^T x + b > 0$$

$$w^T x + b < 0$$

- Input $(x^{(1)}, y^{(1)}), \dots, (x^{(M)}, y^{(M)})$ with $x^{(m)} \in \mathbb{R}^n$ and $y^{(m)} \in \{-1, +1\}$
- We can think of the observations as points in \mathbb{R}^n with an associated sign (either +/- corresponding to 0/1)
- An example with n=2



that the observations are linearly separable

The Linearly Separable Case

- Input $(x^{(1)}, y^{(1)}), \dots, (x^{(M)}, y^{(M)})$ with $x^{(m)} \in \mathbb{R}^n$ and $y^{(m)} \in \{-1, +1\}$
- Hypothesis space: separating hyperplanes

$$f(x) = sign\left(w^T x + b\right)$$

How should we choose the loss function?

The Linearly Separable Case

- Input $(x^{(1)}, y^{(1)}), \dots, (x^{(M)}, y^{(M)})$ with $x^{(m)} \in \mathbb{R}^n$ and $y^{(m)} \in \{-1, +1\}$
- Hypothesis space: separating hyperplanes

$$f(x) = sign\left(w^T x + b\right)$$

- How should we choose the loss function?
 - Count the number of misclassifications

$$loss = \sum_{m} \left| y^{(m)} - sign(w^{T} x^{(m)} + b) \right|$$

Tough to optimize, gradient contains no information

The Linearly Separable Case

- Input $(x^{(1)}, y^{(1)}), \dots, (x^{(M)}, y^{(M)})$ with $x^{(m)} \in \mathbb{R}^n$ and $y^{(m)} \in \mathbb{R}^n$ $\{-1,+1\}$
- Hypothesis space: separating hyperplanes

$$f(x) = sign\left(w^T x + b\right)$$

- How should we choose the loss function?
 - Penalize misclassification linearly by the size of the violation

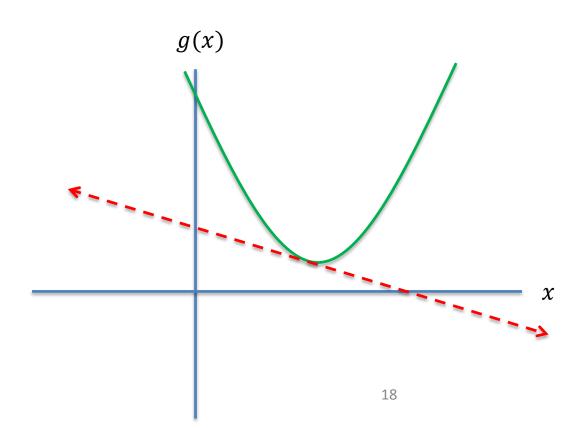
$$perceptron \ loss = \sum_{m} \max\{0, -y^{(m)}(w^{T}x^{(m)} + b)\}$$

 Modified hinge loss (this loss is convex, but not differentiable) 16

- Try to minimize the perceptron loss using gradient descent
 - The perceptron loss isn't differentiable, how can we apply gradient descent?
 - Need a generalization of what it means to be the gradient of a convex function

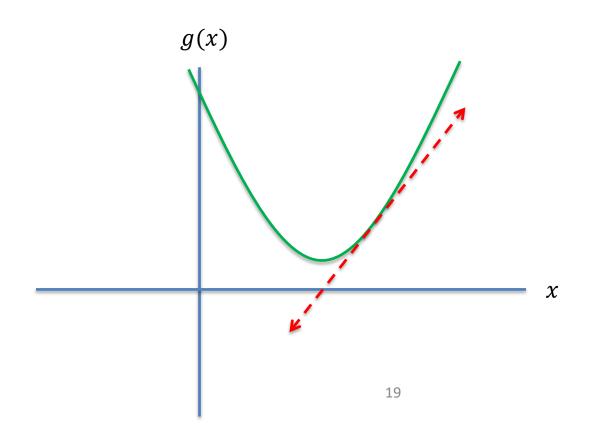
Gradients of Convex Functions

• For a differentiable convex function g(x) its gradients are linear underestimators



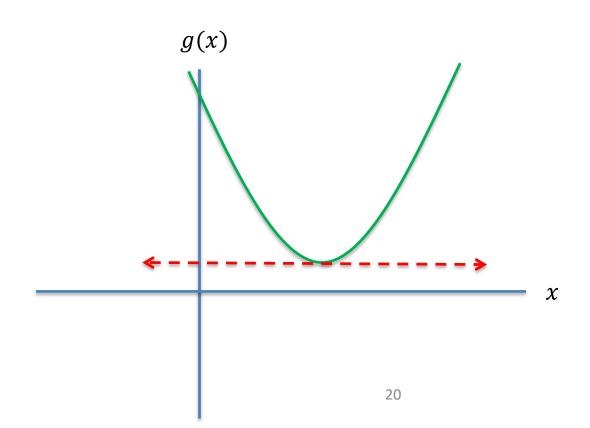
Gradients of Convex Functions

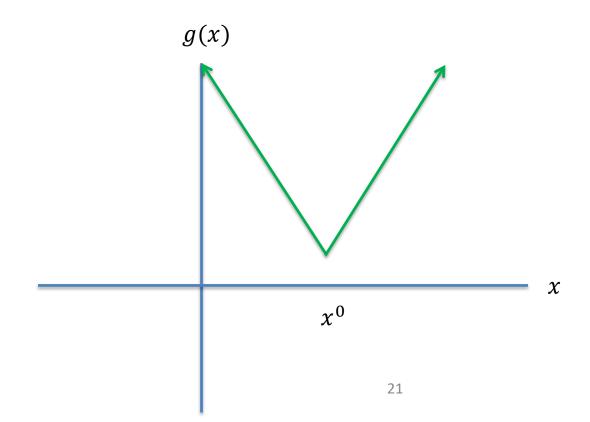
• For a differentiable convex function g(x) its gradients are linear underestimators

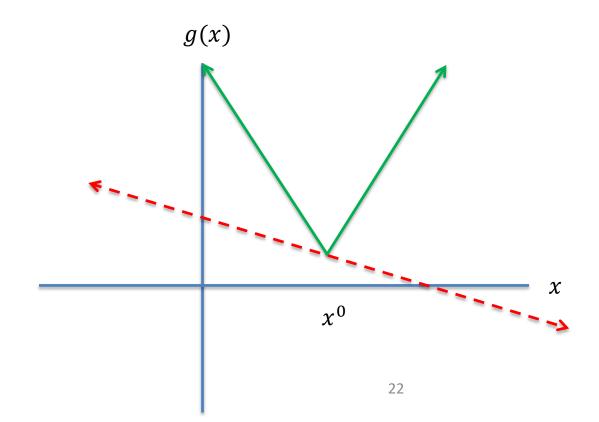


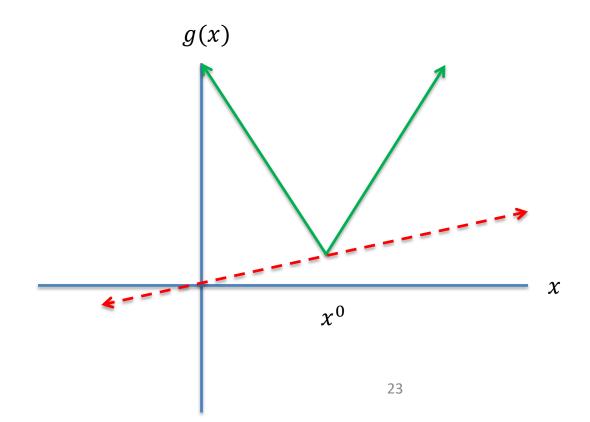
Gradients of Convex Functions

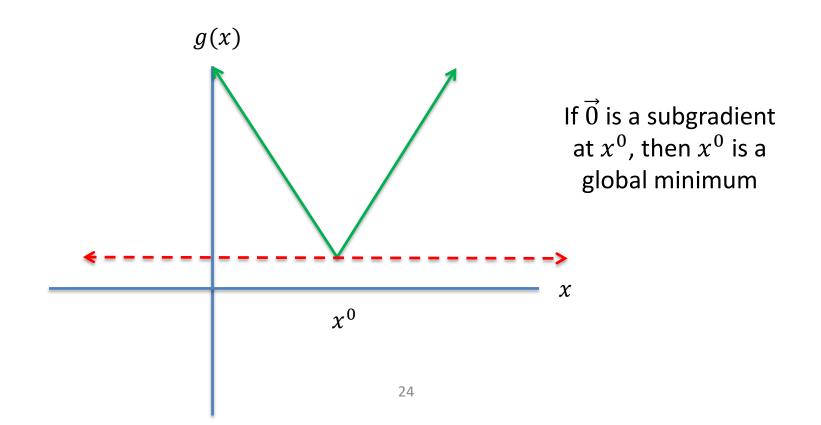
• For a differentiable convex function g(x) its gradients are linear underestimators: zero gradient corresponds to a global optimum











- If a convex function is differentiable at a point x, then it has a unique subgradient at the point x given by the gradient
- If a convex function is not differentiable at a point x, it can have many subgradients
 - E.g., the set of subgradients of the convex function |x| at the point x = 0 is given by the set of slopes [-1,1]
- Subgradients only guaranteed to exist for convex functions

Try to minimize the perceptron loss using (sub)gradient descent

Try to minimize the perceptron loss using (sub)gradient descent

$$\nabla_{w}(perceptron\ loss) = -\sum_{m=1}^{M} \left(y^{(m)} x^{(m)} \cdot 1_{-y^{(m)} f_{w,b}(x^{(m)}) \ge 0} \right)$$

$$\nabla_b(perceptron\ loss) = -\sum_{m=1}^{M} \left(y^{(m)} \cdot 1_{-y^{(m)} f_{w,b}(x^{(m)}) \ge 0} \right)$$

Try to minimize the perceptron loss using (sub)gradient descent

$$\nabla_{w}(perceptron\ loss) = -\sum_{m=1}^{M} \left(y^{(m)} x^{(m)} \cdot \mathbb{1}_{-y^{(m)} f_{w,b}(x^{(m)}) \geq 0} \right)$$

$$\nabla_b(perceptron\ loss) = -\sum_{m=1}^{M} \left(y^{(m)} \cdot 1_{-y^{(m)} f_{w,b}(x^{(m)}) \ge 0} \right)$$

Is equal to zero if the m^{th} data point is correctly classified and one otherwise

Try to minimize the perceptron loss using (sub)gradient descent

$$w^{(t+1)} = w^{(t)} + \gamma_t \sum_{m=1}^{M} \left(y^{(m)} x^{(m)} \cdot 1_{-y^{(m)} f_{w,b}(x^{(m)}) \ge 0} \right)$$

$$b^{(t+1)} = b^{(t)} + \gamma_t \sum_{m=1}^{M} \left(y^{(m)} \cdot 1_{-y^{(m)} f_{w,b}(x^{(m)}) \ge 0} \right)$$

- With step size γ_t (also called the learning rate)
- Note that, for convergence of subgradient methods, a diminishing step size, e.g., $\gamma_t = \frac{1}{1+t}$ is required

Stochastic Gradient Descent

- To make the training more practical, stochastic (sub)gradient descent is often used instead of standard gradient descent
- Approximate the gradient of a sum by sampling a few indices (as few as one) uniformly at random and averaging

$$\nabla_{x} \left[\sum_{m=1}^{M} g_{m}(x) \right] \approx \frac{1}{K} \sum_{k=1}^{K} \nabla_{x} g_{m_{k}}(x)$$

here, each m_k is sampled uniformly at random from $\{1, ..., M\}$

 Stochastic gradient descent converges to the global optimum under certain assumptions on the step size

Stochastic Gradient Descent

• Setting K=1, we pick a random observation m and perform the following update

if the m^{th} data point is misclassified:

$$w^{(t+1)} = w^{(t)} + \gamma_t y^{(m)} x^{(m)}$$
$$b^{(t+1)} = b^{(t)} + \gamma_t y^{(m)}$$

if the m^{th} data point is correctly classified:

$$w^{(t+1)} = w^{(t)}$$

 $b^{(t+1)} = b^{(t)}$

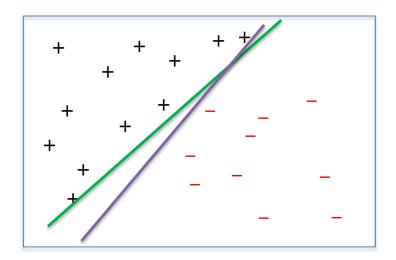
• Sometimes, you will see the perceptron algorithm specified with $\gamma_t=1$ for all t

Applications of Perceptron

- Spam email classification
 - Represent emails as vectors of counts of certain words (e.g., sir, madam, Nigerian, prince, money, etc.)
 - Apply the perceptron algorithm to the resulting vectors
 - To predict the label of an unseen email
 - Construct its vector representation, x'
 - Check whether or not $w^Tx' + b$ is positive or negative

Perceptron Learning Drawbacks

- No convergence guarantees if the observations are not linearly separable
- Can overfit
 - There can be a number of perfect classifiers, but the perceptron algorithm doesn't have any mechanism for choosing between them



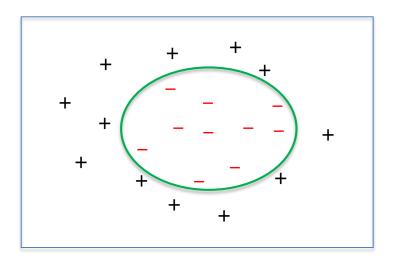
What If the Data Isn't Separable?

- Input $(x^{(1)}, y^{(1)}), \dots, (x^{(M)}, y^{(M)})$ with $x^{(m)} \in \mathbb{R}^n$ and $y^{(m)} \in \{-1, +1\}$
- We can think of the observations as points in \mathbb{R}^n with an associated sign (either +/- corresponding to 0/1)
- An example with n=2

What is a good hypothesis space for this problem?

What If the Data Isn't Separable?

- Input $(x^{(1)}, y^{(1)}), \dots, (x^{(M)}, y^{(M)})$ with $x^{(m)} \in \mathbb{R}^n$ and $y^{(m)} \in \{-1, +1\}$
- We can think of the observations as points in \mathbb{R}^n with an associated sign (either +/- corresponding to 0/1)
- An example with n=2



What is a good hypothesis space for this problem?

Adding Features

Perceptron algorithm only works for linearly separable data

Can add features to make the data linearly separable in a higher dimensional space!

Essentially the same as higher order polynomials for linear regression!

Adding Features

- The idea, choose a feature map $\phi: \mathbb{R}^n \to \mathbb{R}^k$
 - Given the observations $x^{(1)}, \dots, x^{(M)}$, construct feature vectors $\phi(x^{(1)}), \dots, \phi(x^{(M)})$
 - Use $\phi(x^{(1)}), \dots, \phi(x^{(M)})$ instead of $x^{(1)}, \dots, x^{(M)}$ in the learning algorithm
 - Goal is to choose ϕ so that $\phi(x^{(1)}), ..., \phi(x^{(M)})$ are linearly separable in \mathbb{R}^k
 - Learn linear separators of the form $w^T \phi(x)$ (instead of $w^T x$)
- Warning: more expressive features can lead to overfitting!

Adding Features: Examples

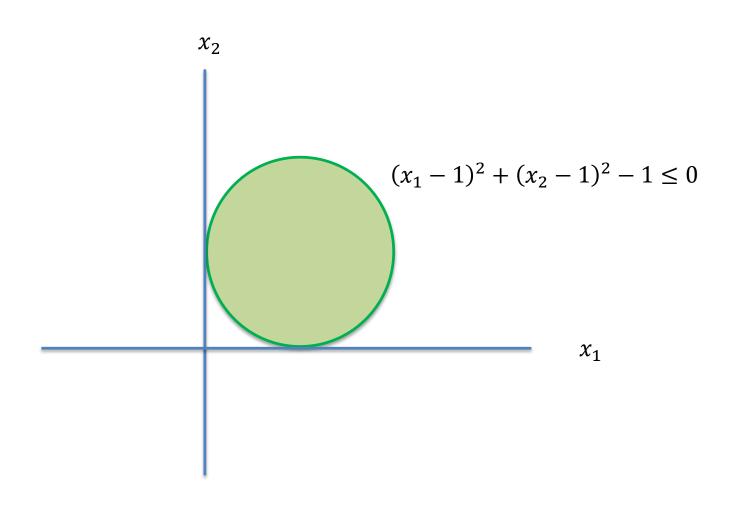
•
$$\phi\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

This is just the input data, without modification

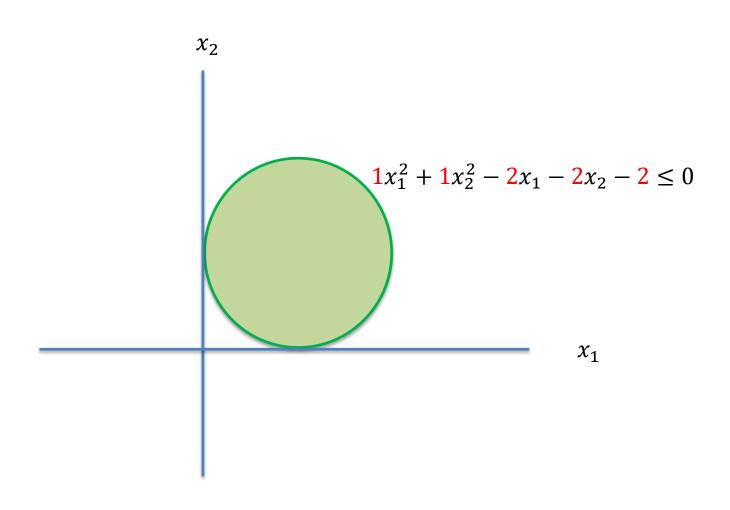
$$\bullet \ \phi\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ x_1^2 \\ x_2^2 \end{bmatrix}$$

 This corresponds to a second degree polynomial separator, or equivalently, elliptical separators in the original space

Adding Features



Adding Features



Support Vector Machines

How can we decide between two perfect classifiers?

What is the practical difference between these two solutions?