

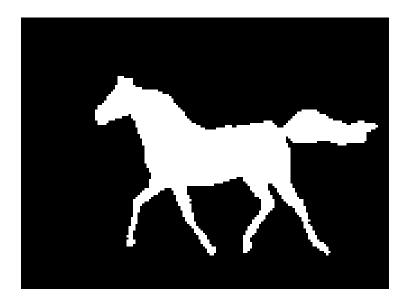
Active Learning

Nicholas Ruozzi University of Texas at Dallas

Supervised Learning

- We're given lots and lots of labelled examples
 - Goal is to predict the label of unseen examples
 - Observations:
 - We don't necessarily need that many data points to construct a good classifier (think SVMs)
 - In certain applications, labels are *expensive*
 - They can cost time, money, or other resources

Image Segmentation



Someone (probably a graduate student) had to produce these labels by hand!

Expensive Data

- In general, data is easy to come by but labels are expensive
 - Labelled speech
 - Labelled images and video
 - Large corpora of texts
- These tasks are mind numbing and boring
 - Can pay people to do them! (Amazon Mechanical Turk)
 - Can get expensive fast and we need some way to ensure that they are accurately solving the problem or else we are wasting money!

Semi-supervised Learning

- Given a collection of labeled and unlabeled data, use it to build a model to predict the labels of unseen data points
 - We never get to see the labels of the unlabeled data
 - However, if we assume something about the data generating process, the unlabeled data can still be useful...
 - Could find the model that maximizes the probability of both the labeled and unlabeled data (another application of EM!)

Active Learning

- Given lots of unlabeled examples
 - Learn to predict the label of unseen data points
 - The added feature: we have the ability to ask for the label of any one of the unlabeled inputs (e.g., a labelling oracle/expert)
 - Treat asking the oracle for a label as an expensive operation
 - The performance of the algorithm will be judged by how few queries it can make to learn a good classifier

Related to Experimental Design

- Suppose that we want to determine what disease a patient has
 - We can run a series of (possibly expensive) tests in order to determine the correct diagnosis
 - How should we choose the tests so as to minimize cost (dollars and life) while still guaranteeing that we come up with the correct diagnosis?

A First Attempt

- Could just randomly pick an unlabeled data point
 - Request its label
 - Add it to the training data
 - Retrain the model
 - Repeat
- If labels are really expensive, can be a terrible idea
 - Many unlabeled data points may have very little impact on the predicted labels
 - This is effectively the supervised setting

- Binary classification via linear separators
- Suppose we are given a collection of unlabeled data points in one dimension
- Assuming that the data is separable (and noise free), how many queries to the labeling oracle do we need to find a separator?

- Binary classification via linear separators
- Suppose we are given a collection of unlabeled data points in one dimension
- Assuming that the data is separable (and noise free), how many queries to the labeling oracle do we need to find a separator?

- Binary classification via linear separators
- Suppose we are given a collection of unlabeled data points in one dimension
- Assuming that the data is separable (and noise free), how many queries to the labeling oracle do we need to find a separator?

- Binary classification via linear separators
- Suppose we are given a collection of unlabeled data points in one dimension
- Assuming that the data is separable (and noise free), how many queries to the labeling oracle do we need to find a separator?

- Binary classification via linear separators
- Suppose we are given a collection of unlabeled data points in one dimension
- Assuming that the data is separable (and noise free), how many queries to the labeling oracle do we need to find a separator?

- Binary classification via linear separators
- Suppose we are given a collection of unlabeled data points in one dimension
- Assuming that the data is separable (and noise free), how many queries to the labeling oracle do we need to find a separator?

- Binary classification via linear separators
- Suppose we are given a collection of unlabeled data points in one dimension
- Assuming that the data is separable (and noise free), how many queries to the labeling oracle do we need to find a separator?

Ideal case: number of hypotheses consistent with the labeling is approximately halved at each step

Types of Active Learning

- Pool based
 - We're given all of the unlabeled data upfront
- Streaming
 - Unlabeled examples come in one at a time and we have to decide whether or not we want to label them as they arrive
 - Also applies to applications in which storing all the data is not possible

Basic Strategy

- Iteratively build a model
- Use the current model to find "informative" unlabeled examples
- Select the most informative example(s)
 - Label them and add them to the training data
- Retrain the model using the new training data
- Repeat

Basic Strategy

- Iteratively build a model
- Use the current model to find "informative" unlabeled examples
- Select the most informative example(s)
 - Label them and add them to the training data
- Retrain the model using the new training data
- Repeat

Note: this procedure will result in a biased sampling of the underlying distribution in general (the actively labeled dataset is not reflective of the underlying data generating process)

Informative Examples

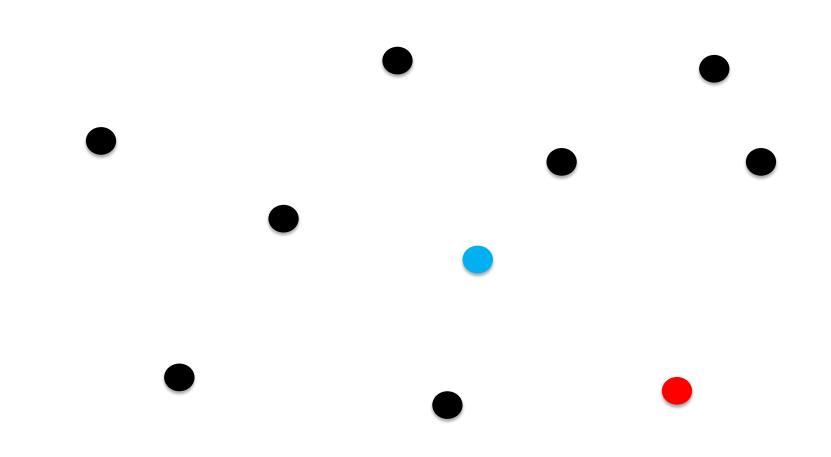
- For learning algorithms that model the data generating process...
 - A data point is informative if the current model is not confident in its prediction for this example
 - Least confident labeling (binary label case):

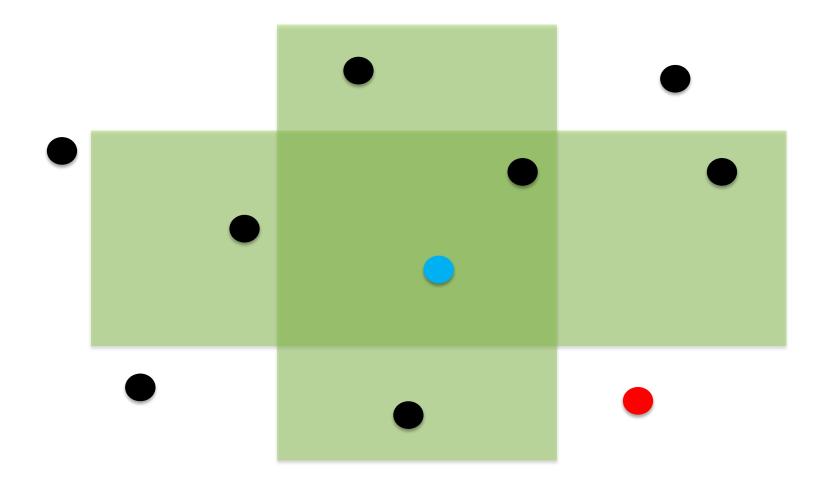
$$\arg \max_{x \text{ unlabeled}} 1 - \max_{y} p(y|x,\theta)$$

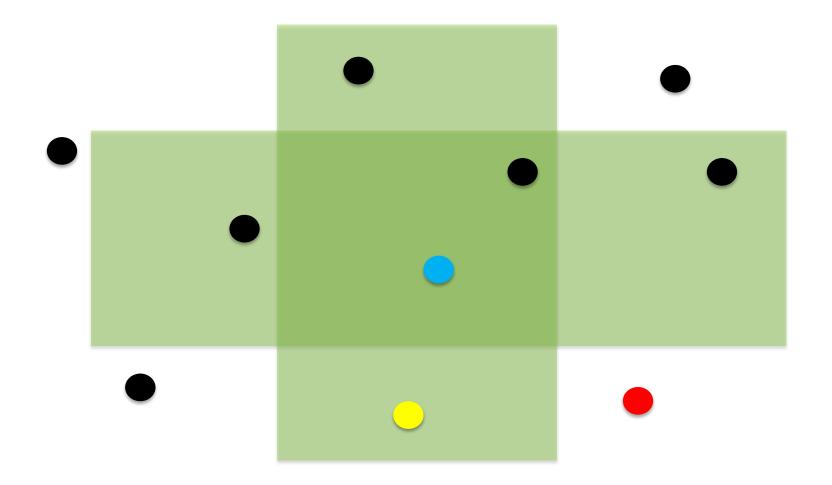
- For learning algorithms, like SVMs, that are simply selecting among a collection of hypotheses...
 - Unlabeled data points that are far from the current decision boundary are unlikely to provide useful information

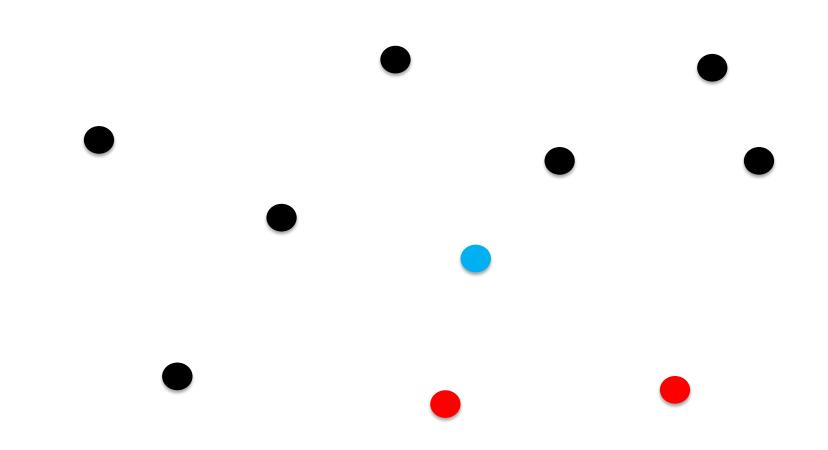
- Select a committee of *T* consistent classifiers using the labeled data
- Find examples for which the committee has the largest disagreement
 - For example, in a binary labeling problem, find the examples for which the committee's votes are split as close to 50/50 as possible between +1 and -1
- Request the label for these examples

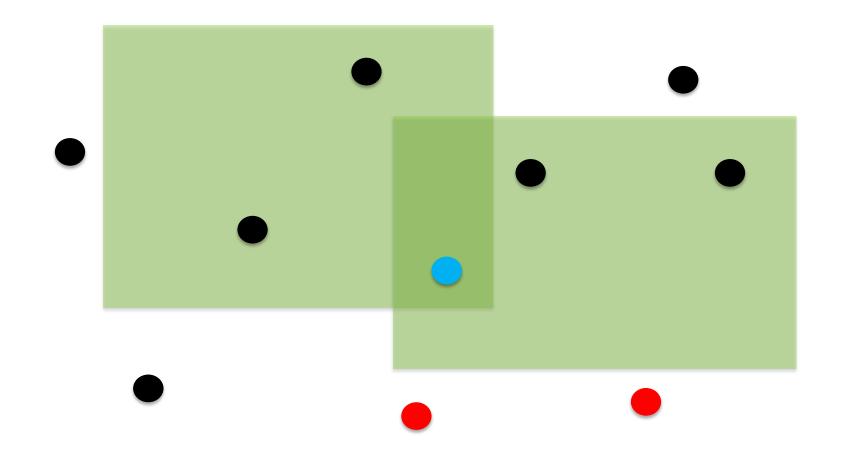
Goal: reduce the version space as much as possible by selecting points whose label will eliminate the most hypotheses

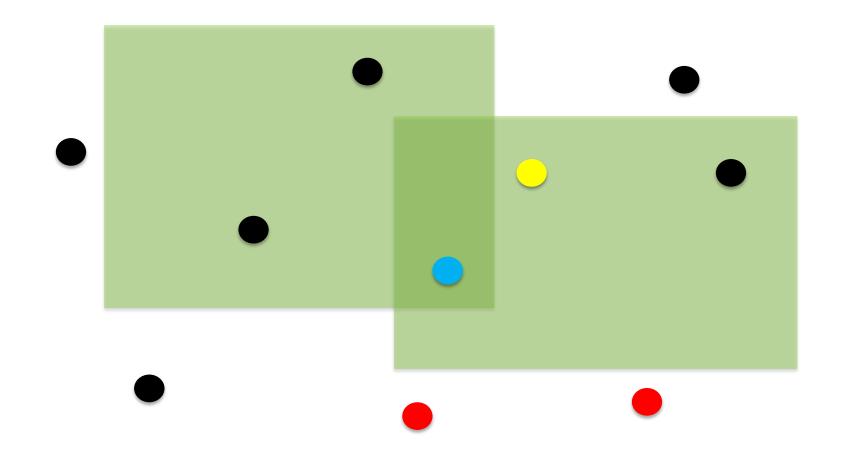


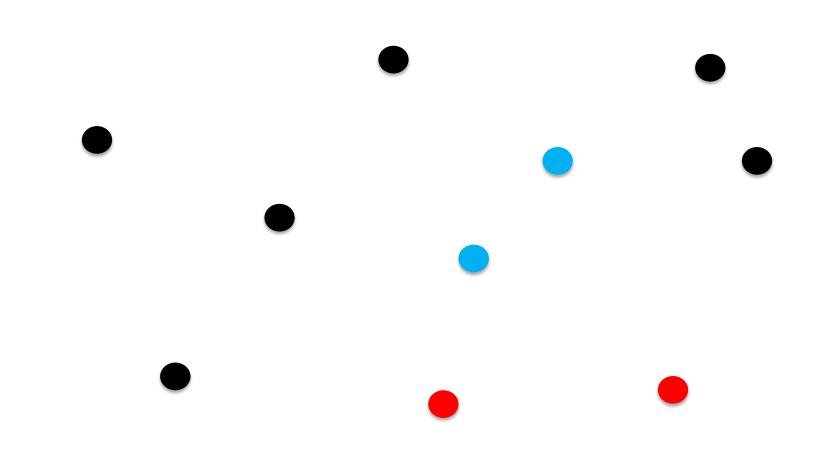










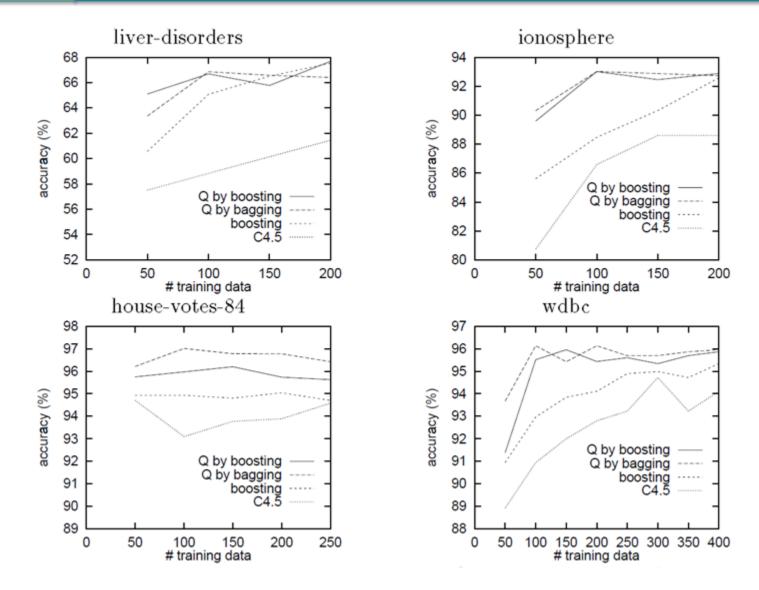


- How to form a committee?
 - Need to pick consistent hypotheses (ideally, we'd consider all possible consistent hypotheses, but that may not be computationally feasible)
 - We could sample hypotheses from the version space with respect to the underlying distribution over hypotheses $p(\theta | labeled \ data)$
 - Difficult/expensive to compute this distribution in practice
 - Other ideas?

Query-by-Bagging

- At each step, generate *T* samples from the labeled data by resampling as in bagging
 - Train a perfect classifier on each sample
 - The committee is chosen to be these *T* classifiers
- Perform one iteration of the query-by-committee scheme using the above selected committee
- Can also do query-by-boosting! (same basic idea)
 - Run AdaBoost for *T* iterations to build a classifier
 - The AdaBoost classifier already contains the weighted vote of the committee

Experimental Comparison



Abe & Mamitsuka, ICML '98

Outliers

- A data point may have an uncertain/controversial label simply because it is an outlier
 - Such data points are unlikely to help the learner and could even hurt performance
 - Some methods to help correct for this (density weighting, etc.)

Other Query Selection Heuristics

- Many other heuristics to select informative data points
 - Select examples whose inclusion results in the most significant change in the model
 - Select examples that reduce the expected generalization error the most over unlabeled examples (labeled using the model)
 - Select examples that reduce the model variance the most

Mellow Learners

- Consider the streaming setting
- Let H_1 be the hypothesis class
- At step t,
 - Receive unlabeled point $x^{(t)}$
 - If there is any disagreement within H_t about $x^{(t)}$'s label, query label $y^{(t)}$ and set $H_{t+1} = \{h \in H_t : h(x^{(t)}) = y^{(t)}\}$ else $H_{t+1} = H_t$

Mellow Learners

- Consider the streaming setting
- Let H_1 be the hypothesis space
- At step t,
 - Receive unlabeled point $x^{(t)}$
 - If there is any disagreement within H_t about $x^{(t)}$'s label, query label $y^{(t)}$ and set $H_{t+1} = \{h \in H_t : h(x^{(t)}) = y^{(t)}\}$ else $H_{t+1} = H_t$

Can be intractable to compute and store H_t 's

Mellow Learners

- Consider the streaming setting
- Let H_1 be the hypothesis space
- At step t,
 - Receive unlabeled point $x^{(t)}$
 - If there is any disagreement within H_t about $x^{(t)}$'s label, query label $y^{(t)}$ and set $H_{t+1} = \{h \in H_t : h(x^{(t)}) = y^{(t)}\}$ else $H_{t+1} = H_t$

Results, roughly, in an exponential decrease in number of labels needed

Challenges

- Is it always possible to find queries that will effectively cut the size of the set of consistent hypotheses (a.k.a. the version space) in half?
 - If so, how can we find them?
 - Can we construct approaches that come with rigorous guarantees (e.g., the PAC learning for the active learning setting)?
 - How to handle noisy labels?