

Collaborative Filtering

Nicholas Ruozzi University of Texas at Dallas

Collaborative Filtering

- Combining information among collaborating entities to make recommendations and predictions
 - Can be viewed as a supervised learning problem (with some caveats)
 - Because of its many, many applications, it gets a special name

Examples

- Movie/TV recommendation (Netflix, Hulu, iTunes)
- Product recommendation (Amazon)
- Social recommendation (Facebook)
- News content recommendation (Yahoo)
- Priority inbox & spam filtering (Google)
- Online dating (OK Cupid)

Netflix Movie Recommendation

Training Data

user	movie	rating
1	14	3
1	200	4
1	315	1
2	15	5
2	136	1
3	235	3
4	79	3

Test Data

user	movie	rating
1	50	?
1	28	?
2	94	?
2	32	?
3	11	?
4	99	?
4	54	?

Recommender Systems

- Content-based recommendations
 - Recommendations based on a user profile (specific interests) or previously consumed content
- Collaborative filtering
 - Recommendations based on the content preferences of similar users
- Hybrid approaches

Collaborative Filtering

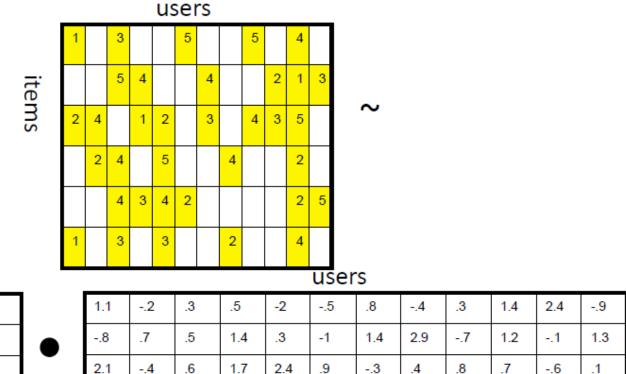
- Widely-used recommendation approaches:
 - *k*-nearest neighbor methods
 - Matrix factorization based methods
- Predict the utility of items for a user based on the items previously rated by other like-minded users

- There could be a number of latent factors that affect the recommendation
 - Style of movie: serious vs. funny vs. escapist
 - Demographic: is it preferred more by men or women
- View CF as a matrix factorization problem

• Express a matrix $M \in \mathbb{R}^{m \times n}$ approximately as a product of factors $A \in \mathbb{R}^{m \times p}$ and $B \in \mathbb{R}^{p \times n}$

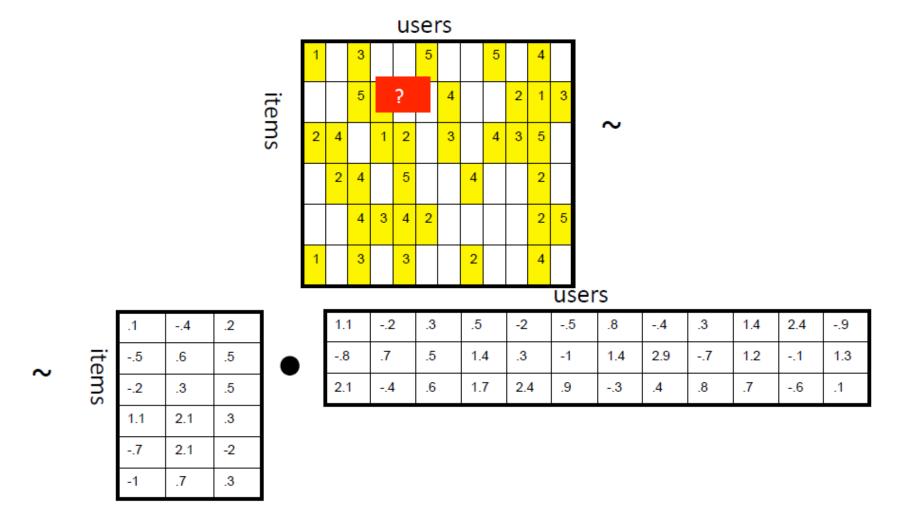
$$M \sim A \cdot B$$

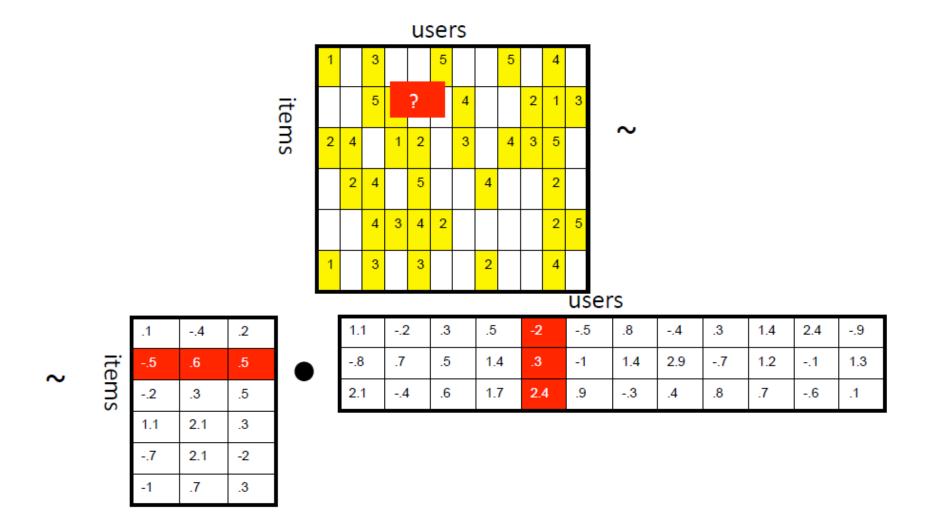
- Approximate the user × items matrix as a product of matrices in this way
 - Similar to SVD decompositions that we saw earlier (SVD can't be used for a matrix with missing entries)
 - Think of the entries of M as corresponding to an inner product of latent factors



-.4 .2 items .6 .5 -.2 .3 .5 1.1 2.1 .3 -.7 2.1 -2 -1 .7 .3

[from slides of Alex Smola]





We can express finding the "closest" matrix as an optimization problem

$$\min_{A,B} \sum_{(u,i) \ observed} \left(M_{u,i} - \left< A_{u,:}, B_{:,i} \right> \right)^2 + \lambda (\|A\|_F^2 + \|B\|_F^2)$$

We can express finding the "closest" matrix as an optimization problem

$$\min_{A,B} \sum_{(u,i) \ observed} \left(M_{u,i} - \left\langle A_{u,:}, B_{:,i} \right\rangle \right)^2 + \lambda (\|A\|_F^2 + \|B\|_F^2)$$

Computes the error in the approximation of the observed matrix entries

We can express finding the "closest" matrix as an optimization problem

$$\min_{A,B} \sum_{(u,i) \ observed} \left(M_{u,i} - \langle A_{u,:}, B_{:,i} \rangle \right)^2 + \chi(\|A\|_F^2 + \|B\|_F^2)$$

Regularization preferences matrices with small Frobenius norm

We can express finding the "closest" matrix as an optimization problem

$$\min_{A,B} \sum_{(u,i) \ observed} \left(M_{u,i} - \left\langle A_{u,:}, B_{:,i} \right\rangle \right)^2 + \lambda (\|A\|_F^2 + \|B\|_F^2)$$

How to optimize this objective?

We can express finding the "closest" matrix as an optimization problem

$$\min_{A,B} \sum_{(u,i) \ observed} \left(M_{u,i} - \langle A_{u,:}, B_{:,i} \rangle \right)^2 + \lambda (\|A\|_F^2 + \|B\|_F^2)$$

- How to optimize this objective?
 - (Stochastic) gradient descent!

Extensions

- The basic matrix factorization approach doesn't take into account the observation that some people are tougher reviewers than others and that some movies are over-hyped
 - Can correct for this by introducing a bias term for each user and a global bias

$$\min_{A,B,\mu,b} \sum_{(u,i) \ observed} (M_{u,i} - \mu - b_i - b_u - \langle A_{u,:}, B_{:,i} \rangle)^2 + \lambda(\|A\|_F^2 + \|B\|_F^2) + \nu \left(\sum_i b_i^2 + \sum_u b_u^2 \right)$$

End of course content...

Supervised Learning

- Regression & classification
- Discriminative methods
 - k-NN
 - Decision trees
 - Perceptron
 - SVMs & kernel methods
 - Logistic regression
 - Neural networks
- Parameter learning
 - Maximum likelihood estimation
 - Expectation maximization

Bayesian Approaches

- MAP estimation
- Prior/posterior probabilities
- Bayesian networks
 - Naive Bayes

Unsupervised Learning

- Clustering
 - *k*-means
 - Spectral clustering
 - Hierarchical clustering
- Expectation maximization
 - Soft clustering
 - Mixtures of Gaussians

Learning Theory

- PAC learning
- VC dimension
- Bias/variance tradeoff
- Chernoff bounds
- Sample complexity

Optimization Methods

- Gradient descent
 - Stochastic gradient descent
 - Subgradient methods
- Coordinate descent
- Lagrange multipliers and duality

Matrix Based Methods

- Dimensionality Reduction
 - PCA
 - Matrix Factorizations

Ensemble Methods

- Bootstrap sampling
- Bagging
- Boosting

Other Learning Topics

- Active learning
- Reinforcement learning

Questions about the course content?

For the final...

- You should understand the basic concepts and theory of all of the algorithms and techniques that we have discussed in the course
- There is no need to memorize complicated formulas, etc.
 - For example, if I ask for the sample complexity of a scheme, I will give you the generic formula
- However, you should be able to derive the algorithms and updates
 - E.g., Lagrange multipliers and SVMs, the EM algorithm, etc.

For the final...

- No calculators, books, notes, etc. will be permitted
 - As before, if you need a calculator, you have done something terribly wrong
- The exam will be in roughly the same format
 - Expect true/false questions, short answers, and two-three long answer questions
- Exam will emphasize the new material, but ALL material will be tested
- Take a look at the practice exams!

Final Exam

Wednesday, 12/14/2018

11:00AM - 1:45PM

GR 3.302

ML Related People

- Vincent Ng (NLP)
- Vibhav Gogate (MLNs, Sampling, Graphical Models)
- Sriraam Natarajan (Graphical Models & Reinforcement Learning)
- Sanda Harabagiu (NLP & Health)
- Nicholas Ruozzi (Graphical Models & Approx. Inference)
- Rishabh Iyer (Submodular Optimization)
- Yu Xiang (Computer Vision/Robotics)
- Yapeng Tian(Audio-visual Scene Understanding)

• • •

Please evaluate the course!

eval.utdallas.edu