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Handwritten Digit Recognition

• Given a collection of handwritten digits 
and their corresponding labels, we’d 
like to be able to correctly classify 
handwritten digits

• A simple algorithmic technique can 
solve this problem with 95% 
accuracy

• State-of-the-art methods can 
achieve near 99% accuracy 
(you’ve probably seen these in 
action if you’ve deposited a 
check recently)

2
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Neural Networks

• The basis of neural networks was developed in the 1940s -1960s

• The idea was to build mathematical models that might 
“compute” in the same way that neurons in the brain do

• As a result, neural networks are biologically inspired, though 
many of the algorithms developed for them are not 
biologically plausible

• Perform surprisingly well for the handwritten digit 
recognition task (and many others)
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Neural Networks
• Neural networks consist of a collection of artificial neurons

• There are different types of neuron models that are commonly 
studied

• The perceptron (one of the first studied)

• The sigmoid neuron (one of the most common, but many 
more)

• Rectified linear units

• A neural network is a directed graph consisting of a collection of 
neurons (the nodes), directed edges (each with an associated 
weight), and a collection of fixed binary inputs
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The Perceptron
• A perceptron is an artificial neuron that takes a collection of 

binary inputs and produces a binary output

• The output of the perceptron is determined by summing up 
the weighted inputs and thresholding the result:  if the 
weighted sum is larger than the threshold, the output is one 
(and zero otherwise)  

𝑦𝑦 = �1 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2 + 𝑤𝑤3𝑥𝑥3 > 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
0 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑤𝑤𝑜𝑜𝑡𝑡𝑡𝑡
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Perceptrons

• Perceptrons are usually expressed in terms of a collection of 
input weights and a bias 𝑏𝑏 (which is the negative threshold)

𝑦𝑦 = �1 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2 + 𝑤𝑤3𝑥𝑥3 + 𝑏𝑏 > 0
0 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑤𝑤𝑜𝑜𝑡𝑡𝑡𝑡

• A single node perceptron is just a linear classifier

• This is actually where the “perceptron algorithm” comes from
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Perceptron for NOT

• Choose 𝑤𝑤 = −1, threshold = −.5

• 𝑦𝑦 = �1 −𝑥𝑥 > −.5
0 −𝑥𝑥 ≤ −.5
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Perceptron for OR
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Perceptron for OR

• Choose 𝑤𝑤1 = 𝑤𝑤2 = 1, threshold = 0

• 𝑦𝑦 = �1 𝑥𝑥1 + 𝑥𝑥2 > 0
0 𝑥𝑥1 + 𝑥𝑥2 ≤ 0
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Perceptron for AND
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Perceptron for AND

• Choose 𝑤𝑤1 = 𝑤𝑤2 = 1, threshold = 1.5

• 𝑦𝑦 = �1 𝑥𝑥1 + 𝑥𝑥2 > 1.5
0 𝑥𝑥1 + 𝑥𝑥2 ≤ 1.5
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Perceptron for XOR
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Perceptron for XOR

• Need more than one perceptron!

• Weights for incoming edges are chosen as before

• Networks of perceptrons can encode any circuit!
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Neural Networks
• Gluing a bunch of perceptrons together gives us a neural 

network

• In general, neural nets have a collection of binary inputs and a 
collection of binary outputs
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Beyond Perceptrons

• Given a collection of input-output pairs, we’d like to learn the 
weights of the neural network so that we can correctly predict 
the output of an unseen input

• We could try learning via gradient descent (e.g., by 
minimizing the Hamming loss)

• This approach doesn’t work so well:  small changes in the 
weights can cause dramatic changes in the output 

• This is a consequence of the discontinuity of sharp 
thresholding (same problem we saw with perceptron alg.)

15



The Sigmoid Neuron

• A sigmoid neuron is an artificial neuron that takes a collection of 
real inputs and produces an output in the interval [0,1]

• The output is determined by summing up the weighted 
inputs plus the bias and applying the sigmoid function to the 
result

𝑦𝑦 = 𝜎𝜎(𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2 + 𝑤𝑤3𝑥𝑥3 + 𝑏𝑏)

where 𝜎𝜎 is the sigmoid function
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The Sigmoid Function

• The sigmoid function is a continuous function that approximates 
a step function

𝜎𝜎 𝑧𝑧 =
1

1 + 𝑡𝑡−𝑧𝑧
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Rectified Linear Units

• The sigmoid neuron approximates a step function as a smooth 
function

• The relu is given by max(0, 𝑥𝑥) which can be approximated as a 
smooth continuous function ln(1 + 𝑡𝑡𝑥𝑥)
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Softmax

• The softmax function maps a vector of real numbers to a vector 
of probabilities as

softmax 𝑧𝑧 𝑗𝑗 =
𝑡𝑡𝑧𝑧𝑗𝑗

∑𝑘𝑘 𝑡𝑡𝑧𝑧𝑘𝑘

• If there is a dominant value in z, then it will become one under 
the softmax

• Often used as the final layer of a neural network
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Multilayer Neural Networks

20

from Neural Networks and Deep Learning by Michael Nielson  



Multilayer Neural Networks
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from Neural Networks and Deep Learning by Michael Nielson  

NO intralayer connections



Neural Network for Digit Classification
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from Neural Networks and Deep Learning by Michael Nielson  



Neural Network for Digit Classification
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from Neural Networks and Deep Learning by Michael Nielson  

Why 10 
instead of 4?



Expressiveness of NNs
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• Boolean functions

• Every Boolean function can be represented by a network 
with a single hidden layer consisting of possibly exponentially 
many hidden units

• Continuous functions

• Every bounded continuous function can be approximated up 
to arbitrarily small error by a network with one hidden layer

• Any function can be approximated to arbitrary accuracy with 
two hidden layers



Expressiveness of NNs
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• Theorem [Zhang et al. 2016]: There exists a two-layer neural 
network with ReLU activations and 2𝑛𝑛 + 𝑡𝑡 weights that can 
represent any function on a sample of size 𝑛𝑛 in 𝑡𝑡 dimensions

• This should mean that it is very easy to overfit with neural 
networks

• Generalization performance of networks is difficult to assess 
theoretically



Training Neural Networks

• To do the learning, we first need to define a loss function to 
minimize

𝐶𝐶 𝑤𝑤, 𝑏𝑏 =
1
2𝑀𝑀

�
𝑚𝑚

𝑦𝑦𝑚𝑚 − 𝑎𝑎(𝑥𝑥𝑚𝑚,𝑤𝑤, 𝑏𝑏) 2

• The training data consists of input output pairs 
(𝑥𝑥1,𝑦𝑦1), … , (𝑥𝑥𝑀𝑀,𝑦𝑦𝑀𝑀)

• 𝑎𝑎(𝑥𝑥𝑚𝑚,𝑤𝑤, 𝑏𝑏) is the output of the neural network for the 𝑚𝑚𝑡𝑡𝑡

sample

• 𝑤𝑤 and 𝑏𝑏 are the weights and biases
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Gradient of the Loss

• The derivative of the loss function is calculated as follows

𝜕𝜕𝐶𝐶(𝑤𝑤, 𝑏𝑏)
𝜕𝜕𝑤𝑤𝑘𝑘

=
1
𝑀𝑀
�
𝑚𝑚

𝑦𝑦𝑚𝑚 − 𝑎𝑎(𝑥𝑥𝑚𝑚,𝑤𝑤, 𝑏𝑏)
𝜕𝜕𝑎𝑎(𝑥𝑥𝑚𝑚,𝑤𝑤, 𝑏𝑏)

𝜕𝜕𝑤𝑤𝑘𝑘

• To compute the derivative of 𝑎𝑎, use the chain rule and the 
derivative of the sigmoid function

𝑡𝑡𝜎𝜎(𝑧𝑧)
𝑡𝑡𝑧𝑧

= 𝜎𝜎 𝑧𝑧 ⋅ (1 − 𝜎𝜎 𝑧𝑧 )

• This gets complicated quickly with lots of layers of neurons
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Stochastic Gradient Descent

• To make the training more practical, stochastic gradient descent 
is used instead of standard gradient descent

• Recall, the idea of stochastic gradient descent is to approximate 
the gradient of a sum by sampling a few indices and averaging 

𝛻𝛻𝑥𝑥�
𝑖𝑖=1

𝑛𝑛

𝑓𝑓𝑖𝑖(𝑥𝑥) ≈
1
𝐾𝐾
�
𝑘𝑘=1

𝐾𝐾

𝛻𝛻𝑥𝑥𝑓𝑓𝑖𝑖𝑘𝑘(𝑥𝑥)

here, for example,  each 𝑜𝑜𝑘𝑘 is sampled uniformly at random
from {1, … ,𝑛𝑛}
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Computing the Gradient
• We’ll compute the gradient for a single sample

𝐶𝐶 𝑤𝑤, 𝑏𝑏 =
1
2 𝑦𝑦 − 𝑎𝑎(𝑥𝑥,𝑤𝑤, 𝑏𝑏) 2

• Some definitions:

• 𝐿𝐿 is the number of layers

• 𝑎𝑎𝑗𝑗𝑙𝑙 is the output of the 𝑗𝑗𝑡𝑡𝑡 neuron on the 𝑡𝑡𝑡𝑡𝑡 layer

• 𝑧𝑧𝑗𝑗𝑙𝑙 is the weighted input of the 𝑗𝑗𝑡𝑡𝑡 neuron on the 𝑡𝑡𝑡𝑡𝑡 layer

𝑧𝑧𝑗𝑗𝑙𝑙 = �
𝑘𝑘

𝑤𝑤𝑗𝑗𝑘𝑘𝑙𝑙 𝑎𝑎𝑘𝑘𝑙𝑙−1 + 𝑏𝑏𝑗𝑗𝑙𝑙

• 𝛿𝛿𝑗𝑗𝑙𝑙 is defined to be 𝜕𝜕𝜕
𝜕𝜕𝑧𝑧𝑗𝑗

𝑙𝑙
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Computing the Gradient

For the output layer, we have the following partial derivative

𝜕𝜕𝜕
𝜕𝜕𝑧𝑧𝑗𝑗𝐿𝐿

= − 𝑦𝑦𝑗𝑗 − 𝑎𝑎𝑗𝑗𝐿𝐿
𝜕𝜕𝑎𝑎𝑗𝑗𝐿𝐿

𝜕𝜕𝑧𝑧𝑗𝑗𝐿𝐿

= − 𝑦𝑦𝑗𝑗 − 𝑎𝑎𝑗𝑗𝐿𝐿
𝜕𝜕𝜎𝜎 𝑧𝑧𝑗𝑗𝐿𝐿

𝜕𝜕𝑧𝑧𝑗𝑗𝐿𝐿

= − 𝑦𝑦𝑗𝑗 − 𝑎𝑎𝑗𝑗𝐿𝐿 𝜎𝜎 𝑧𝑧𝑗𝑗𝐿𝐿 1 − 𝜎𝜎 𝑧𝑧𝑗𝑗𝐿𝐿

= 𝛿𝛿𝑗𝑗𝐿𝐿

• For simplicity, we will denote the vector of all such partials for each 
node in the 𝑡𝑡𝑡𝑡𝑡 layer as 𝛿𝛿𝑙𝑙
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Computing the Gradient
For the 𝐿𝐿 − 1 layer, we have the following partial derivative

𝜕𝜕𝜕
𝜕𝜕𝑧𝑧𝑘𝑘𝐿𝐿−1

= �
𝑗𝑗

𝑎𝑎𝑗𝑗𝐿𝐿 − 𝑦𝑦𝑗𝑗
𝜕𝜕𝑎𝑎𝑗𝑗𝐿𝐿

𝜕𝜕𝑧𝑧𝑘𝑘𝐿𝐿−1

= �
𝑗𝑗

𝑎𝑎𝑗𝑗𝐿𝐿 − 𝑦𝑦𝑗𝑗
𝜕𝜕𝜎𝜎 𝑧𝑧𝑗𝑗𝐿𝐿

𝜕𝜕𝑧𝑧𝑘𝑘𝐿𝐿−1

= �
𝑗𝑗

𝑎𝑎𝑗𝑗𝐿𝐿 − 𝑦𝑦𝑗𝑗 𝜎𝜎 𝑧𝑧𝑗𝑗𝐿𝐿 1 − 𝜎𝜎 𝑧𝑧𝑗𝑗𝐿𝐿
𝜕𝜕𝑧𝑧𝑗𝑗𝐿𝐿

𝜕𝜕𝑧𝑧𝑘𝑘𝐿𝐿−1

= �
𝑗𝑗

𝑎𝑎𝑗𝑗𝐿𝐿 − 𝑦𝑦𝑗𝑗 𝜎𝜎 𝑧𝑧𝑗𝑗𝐿𝐿 1 − 𝜎𝜎 𝑧𝑧𝑗𝑗𝐿𝐿
𝜕𝜕 ∑𝑘𝑘′ 𝑤𝑤𝑗𝑗𝑘𝑘′

𝐿𝐿 𝑎𝑎𝑘𝑘′
𝐿𝐿−1 + 𝑏𝑏𝑗𝑗𝐿𝐿

𝜕𝜕𝑧𝑧𝑘𝑘𝐿𝐿−1

= �
𝑗𝑗

𝑎𝑎𝑗𝑗𝐿𝐿 − 𝑦𝑦𝑗𝑗 𝜎𝜎 𝑧𝑧𝑗𝑗𝐿𝐿 1 − 𝜎𝜎 𝑧𝑧𝑗𝑗𝐿𝐿 𝜎𝜎 𝑧𝑧𝑘𝑘𝐿𝐿−1 1 − 𝜎𝜎 𝑧𝑧𝑘𝑘𝐿𝐿−1 𝑤𝑤𝑗𝑗𝑘𝑘𝐿𝐿

= (𝛿𝛿𝐿𝐿)𝑇𝑇𝑤𝑤∗𝑘𝑘𝐿𝐿 1 − 𝜎𝜎 𝑧𝑧𝑘𝑘𝐿𝐿−1 𝜎𝜎 𝑧𝑧𝑘𝑘𝐿𝐿−1
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Computing the Gradient

• We can think of 𝑤𝑤𝑙𝑙 as a matrix

• This allows us to write

𝛿𝛿𝐿𝐿−1 = 𝛿𝛿𝐿𝐿 𝑇𝑇𝑤𝑤𝐿𝐿 𝑇𝑇 ∘ 1 − 𝜎𝜎 𝑧𝑧𝐿𝐿−1 ∘ 𝜎𝜎 𝑧𝑧𝐿𝐿−1

where 𝜎𝜎 𝑧𝑧𝐿𝐿−1 is the vector whose 𝑘𝑘𝑡𝑡𝑡 component is 𝜎𝜎 𝑧𝑧𝑘𝑘𝐿𝐿−1

• Applying the same strategy, for 𝑡𝑡 < 𝐿𝐿

𝛿𝛿𝑙𝑙 = 𝛿𝛿𝑙𝑙+1 𝑇𝑇𝑤𝑤𝑙𝑙+1
𝑇𝑇
∘ 1 − 𝜎𝜎 𝑧𝑧𝑙𝑙 ∘ 𝜎𝜎 𝑧𝑧𝑙𝑙
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Computing the Gradient

• Now, for the partial derivatives that we care about

𝜕𝜕𝐶𝐶
𝜕𝜕𝑏𝑏𝑗𝑗𝑙𝑙

=
𝜕𝜕𝐶𝐶
𝜕𝜕𝑧𝑧𝑗𝑗𝑙𝑙

⋅
𝜕𝜕𝑧𝑧𝑗𝑗𝑙𝑙

𝜕𝜕𝑏𝑏𝑗𝑗𝑙𝑙
= 𝛿𝛿𝑗𝑗𝑙𝑙

𝜕𝜕𝐶𝐶
𝜕𝜕𝑤𝑤𝑗𝑗𝑘𝑘𝑙𝑙

=
𝜕𝜕𝐶𝐶
𝜕𝜕𝑧𝑧𝑗𝑗𝑙𝑙

⋅
𝜕𝜕𝑧𝑧𝑗𝑗𝑙𝑙

𝜕𝜕𝑤𝑤𝑗𝑗𝑘𝑘𝑙𝑙
= 𝛿𝛿𝑗𝑗𝑙𝑙𝑎𝑎𝑘𝑘𝑙𝑙−1

• We can compute these derivatives one layer at a time!
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Backpropagation

• Compute the inputs/outputs for each layer by starting at the input 
layer and applying the sigmoid functions

• Compute 𝛿𝛿𝐿𝐿 for the output layer

𝛿𝛿𝑗𝑗𝐿𝐿 = − 𝑦𝑦𝑗𝑗 − 𝑎𝑎𝑗𝑗𝐿𝐿 𝜎𝜎 𝑧𝑧𝑗𝑗𝐿𝐿 1 − 𝜎𝜎 𝑧𝑧𝑗𝑗𝐿𝐿

• Starting from 𝑡𝑡 = 𝐿𝐿 − 1 and working backwards, compute

𝛿𝛿𝑙𝑙 = 𝛿𝛿𝑙𝑙+1 𝑇𝑇𝑤𝑤𝑙𝑙+1
𝑇𝑇
∘ 𝜎𝜎 𝑧𝑧𝑙𝑙 ∘ 1 − 𝜎𝜎 𝑧𝑧𝑙𝑙

• Perform gradient descent

𝑏𝑏𝑗𝑗𝑙𝑙 = 𝑏𝑏𝑗𝑗𝑙𝑙 − 𝛾𝛾 ⋅ 𝛿𝛿𝑗𝑗𝑙𝑙

𝑤𝑤𝑗𝑗𝑘𝑘𝑙𝑙 = 𝑤𝑤𝑗𝑗𝑘𝑘𝑙𝑙 − 𝛾𝛾 ⋅ 𝛿𝛿𝑗𝑗𝑙𝑙𝑎𝑎𝑘𝑘𝑙𝑙−1
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Backpropagation

• Backpropagation converges to a local minimum (loss is not 
convex in the weights and biases)

• Like EM, can just run it several times with different 
initializations

• Training can take a very long time (even with stochastic 
gradient descent)

• Prediction after learning is fast

• Sometimes include a momentum term 𝛼𝛼 in the gradient 
update

𝑤𝑤 𝑡𝑡 = 𝑤𝑤 𝑡𝑡 − 1 − 𝛾𝛾 ⋅ 𝛻𝛻𝑤𝑤𝐶𝐶 𝑡𝑡 − 1 + 𝛼𝛼 −𝛾𝛾 ⋅ 𝛻𝛻𝑤𝑤𝐶𝐶(𝑡𝑡 − 2)
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Overfitting
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Overfitting
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Neural Networks in Practice

• Many ways to improve weight learning in NNs

• Use a regularizer!   (better generalization?)
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Regularized Loss

• Penalize learning large weights

𝐶𝐶′ 𝑤𝑤,𝑏𝑏 =
1
2𝑀𝑀

�
𝑚𝑚

𝑦𝑦𝑚𝑚 − 𝑎𝑎 𝑥𝑥𝑚𝑚,𝑤𝑤, 𝑏𝑏 2 +
𝜆𝜆
2

𝑤𝑤 2
2

• Can still use the backpropagation algorithm in this setting

• ℓ1 regularization can also be useful

• Regularization can help with convergence, 𝜆𝜆 should be chosen 
with a validation set
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Neural Networks in Practice

40 Zhang et al. 2016



Neural Networks in Practice

• Many ways to improve weight learning in NNs

• Use a regularizer!   (better generalization?)

• Try other loss functions, e.g., the cross entropy

−𝑦𝑦 log 𝑎𝑎 𝑥𝑥,𝑤𝑤, 𝑏𝑏 − 1 − 𝑦𝑦 log(1 − 𝑎𝑎 𝑥𝑥,𝑤𝑤, 𝑏𝑏 )

• Initialize the weights of the network more cleverly

• Random initializations are likely to be far from optimal

• The learning procedure can have numerical difficulties if there 
are a large number of layers
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Dropout

• A heuristic bagging-style approach applied to neural networks to 
counteract overfitting

• Randomly remove a certain percentage of the neurons from 
the network and then train only on the remaining neurons

• The networks are recombined using an approximate 
averaging technique (keeping around too many networks and 
doing proper bagging can be costly in practice)
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Other Techniques

• Early stopping

• Stop the learning early in the hopes that this prevents 
overfitting

• Parameter tying

• Assume some of the weights in the model are the same to 
reduce the dimensionality of the learning problem

• Also a way to learn “simpler” models

• Can lead to significant compression in neural networks (i.e., 
>90%)
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Other Techniques
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Other Ideas
• Convolutional neural networks

• Instead of the output of every neuron at layer 𝑡𝑡 being used as 
an input to every neuron at layer 𝑡𝑡 + 1, the edges between 
layers are chosen more locally

• Many tied weights and biases (i.e., convolution nets apply 
the same process to many different local chunks of neurons)

• Often combined with pooling layers (i.e., layers that, say, half 
the number of neurons by replacing small regions of neurons 
with their maximum output)

• Used extensively for image classification tasks
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Momentum

• Standard gradient descent does not adjust its step size based on 
local function information, e.g., curvature of the function

• This can result in slow convergence
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Momentum

• Gradient descent with momentum adds an inertia term

𝑥𝑥(𝑡𝑡+1) = 𝑥𝑥(𝑡𝑡) − 𝛾𝛾∇𝑓𝑓 𝑥𝑥 𝑡𝑡 + 𝛽𝛽 𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡−1)
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Momentum

• Gradient descent with momentum adds an inertia term

𝑥𝑥(𝑡𝑡+1) = 𝑥𝑥(𝑡𝑡) − 𝛾𝛾∇𝑓𝑓 𝑥𝑥 𝑡𝑡 + 𝛽𝛽 𝑥𝑥(𝑡𝑡−1) − 𝛾𝛾∇𝑓𝑓 𝑥𝑥 𝑡𝑡−1 − 𝑥𝑥(𝑡𝑡−1)
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Momentum

• Gradient descent with momentum adds an inertia term

𝑥𝑥(𝑡𝑡+1) = 𝑥𝑥(𝑡𝑡) − 𝛾𝛾∇𝑓𝑓 𝑥𝑥 𝑡𝑡 − 𝛾𝛾𝛽𝛽∇𝑓𝑓 𝑥𝑥 𝑡𝑡−1

• If the gradients are similar in two consecutive times steps 
you get an extra boost!
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Momentum
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Accelerated Gradient Methods
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Neural Networks in Practice

• Oftentimes you have a small amount of labeled training data for 
your real domain

• It might not be enough to train a deep NN for the task

• Can you still apply NNs?
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Neural Networks in Practice

• Oftentimes you have a small amount of labeled training data for 
your real domain

• It might not be enough to train a deep NN for the task

• Can you still apply NNs?

Yes! Use transfer learning!
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Transfer Learning

• Idea: take a model trained in a domain with lots of training data 
and transfer it to a smaller, data-limited domain

• The ML task may or may not be the same in both domains

• Lots of ways to do this… one way is to fine-tune a pretrained 
model

• Example:  Bounding box detection using a pretrained model
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Bounding Box Detection
• After 15 training epochs on new training data…
• Confidence threshold = 0.0

• Ap50 without Training (pretrained weights)  =     0.0004
• Ap50 with Training  (trained weights)             =     31.64

• Confidence threshold = 0.05
• Ap50 without Training (pretrained weights) =     0.0002
• Ap50 with Training (trained weights) =     30.975      

• Confidence threshold = 0.3
• Ap50 without Training (pretrained weights) =     nan
• Ap50 with Training (trained weights) =     28.21
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Bounding Box Detection (.3)
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Trained weights output

Input image



Bounding Box Detection (.3)
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Trained weights output

Input image
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