
Neural Networks

Nicholas Ruozzi
University of Texas at Dallas

Handwritten Digit Recognition

• Given a collection of handwritten digits
and their corresponding labels, we’d
like to be able to correctly classify
handwritten digits

• A simple algorithmic technique can
solve this problem with 95%
accuracy

• State-of-the-art methods can
achieve near 99% accuracy
(you’ve probably seen these in
action if you’ve deposited a
check recently)

2

Digits from the MNIST
data set

Neural Networks

• The basis of neural networks was developed in the 1940s -1960s

• The idea was to build mathematical models that might
“compute” in the same way that neurons in the brain do

• As a result, neural networks are biologically inspired, though
many of the algorithms developed for them are not
biologically plausible

• Perform surprisingly well for the handwritten digit
recognition task (and many others)

3

Neural Networks
• Neural networks consist of a collection of artificial neurons

• There are different types of neuron models that are commonly
studied

• The perceptron (one of the first studied)

• The sigmoid neuron (one of the most common, but many
more)

• Rectified linear units

• A neural network is a directed graph consisting of a collection of
neurons (the nodes), directed edges (each with an associated
weight), and a collection of fixed binary inputs

4

The Perceptron
• A perceptron is an artificial neuron that takes a collection of

binary inputs and produces a binary output

• The output of the perceptron is determined by summing up
the weighted inputs and thresholding the result: if the
weighted sum is larger than the threshold, the output is one
(and zero otherwise)

𝑦𝑦 = �1 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2 + 𝑤𝑤3𝑥𝑥3 > 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
0 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑤𝑤𝑜𝑜𝑡𝑡𝑡𝑡

5

𝑥𝑥3

𝑥𝑥2

𝑥𝑥1

𝑦𝑦

Perceptrons

• Perceptrons are usually expressed in terms of a collection of
input weights and a bias 𝑏𝑏 (which is the negative threshold)

𝑦𝑦 = �1 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2 + 𝑤𝑤3𝑥𝑥3 + 𝑏𝑏 > 0
0 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑤𝑤𝑜𝑜𝑡𝑡𝑡𝑡

• A single node perceptron is just a linear classifier

• This is actually where the “perceptron algorithm” comes from

6

𝑥𝑥3

𝑥𝑥2

𝑥𝑥1

𝑦𝑦

Perceptron for NOT

• Choose 𝑤𝑤 = −1, threshold = −.5

• 𝑦𝑦 = �1 −𝑥𝑥 > −.5
0 −𝑥𝑥 ≤ −.5

7

⌐𝑥𝑥 𝑦𝑦

Perceptron for OR

8

Perceptron for OR

• Choose 𝑤𝑤1 = 𝑤𝑤2 = 1, threshold = 0

• 𝑦𝑦 = �1 𝑥𝑥1 + 𝑥𝑥2 > 0
0 𝑥𝑥1 + 𝑥𝑥2 ≤ 0

9

ᴠ𝑥𝑥2

𝑥𝑥1
𝑦𝑦

Perceptron for AND

10

Perceptron for AND

• Choose 𝑤𝑤1 = 𝑤𝑤2 = 1, threshold = 1.5

• 𝑦𝑦 = �1 𝑥𝑥1 + 𝑥𝑥2 > 1.5
0 𝑥𝑥1 + 𝑥𝑥2 ≤ 1.5

11

ᴧ𝑥𝑥2

𝑥𝑥1
𝑦𝑦

Perceptron for XOR

12

Perceptron for XOR

• Need more than one perceptron!

• Weights for incoming edges are chosen as before

• Networks of perceptrons can encode any circuit!

13

ᴧ

ᴠ

𝑥𝑥2

𝑥𝑥1

⌐

ᴧ 𝑦𝑦

Neural Networks
• Gluing a bunch of perceptrons together gives us a neural

network

• In general, neural nets have a collection of binary inputs and a
collection of binary outputs

14

OutputsInputs

Beyond Perceptrons

• Given a collection of input-output pairs, we’d like to learn the
weights of the neural network so that we can correctly predict
the output of an unseen input

• We could try learning via gradient descent (e.g., by
minimizing the Hamming loss)

• This approach doesn’t work so well: small changes in the
weights can cause dramatic changes in the output

• This is a consequence of the discontinuity of sharp
thresholding (same problem we saw with perceptron alg.)

15

The Sigmoid Neuron

• A sigmoid neuron is an artificial neuron that takes a collection of
real inputs and produces an output in the interval [0,1]

• The output is determined by summing up the weighted
inputs plus the bias and applying the sigmoid function to the
result

𝑦𝑦 = 𝜎𝜎(𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2 + 𝑤𝑤3𝑥𝑥3 + 𝑏𝑏)

where 𝜎𝜎 is the sigmoid function

16

𝑥𝑥3

𝑥𝑥2

𝑥𝑥1

𝑦𝑦

The Sigmoid Function

• The sigmoid function is a continuous function that approximates
a step function

𝜎𝜎 𝑧𝑧 =
1

1 + 𝑡𝑡−𝑧𝑧

17

Rectified Linear Units

• The sigmoid neuron approximates a step function as a smooth
function

• The relu is given by max(0, 𝑥𝑥) which can be approximated as a
smooth continuous function ln(1 + 𝑡𝑡𝑥𝑥)

18

Softmax

• The softmax function maps a vector of real numbers to a vector
of probabilities as

softmax 𝑧𝑧 𝑗𝑗 =
𝑡𝑡𝑧𝑧𝑗𝑗

∑𝑘𝑘 𝑡𝑡𝑧𝑧𝑘𝑘

• If there is a dominant value in z, then it will become one under
the softmax

• Often used as the final layer of a neural network

19

Multilayer Neural Networks

20

from Neural Networks and Deep Learning by Michael Nielson

Multilayer Neural Networks

21

from Neural Networks and Deep Learning by Michael Nielson

NO intralayer connections

Neural Network for Digit Classification

22

from Neural Networks and Deep Learning by Michael Nielson

Neural Network for Digit Classification

23

from Neural Networks and Deep Learning by Michael Nielson

Why 10
instead of 4?

Expressiveness of NNs

24

• Boolean functions

• Every Boolean function can be represented by a network
with a single hidden layer consisting of possibly exponentially
many hidden units

• Continuous functions

• Every bounded continuous function can be approximated up
to arbitrarily small error by a network with one hidden layer

• Any function can be approximated to arbitrary accuracy with
two hidden layers

Expressiveness of NNs

25

• Theorem [Zhang et al. 2016]: There exists a two-layer neural
network with ReLU activations and 2𝑛𝑛 + 𝑡𝑡 weights that can
represent any function on a sample of size 𝑛𝑛 in 𝑡𝑡 dimensions

• This should mean that it is very easy to overfit with neural
networks

• Generalization performance of networks is difficult to assess
theoretically

Training Neural Networks

• To do the learning, we first need to define a loss function to
minimize

𝐶𝐶 𝑤𝑤, 𝑏𝑏 =
1
2𝑀𝑀

�
𝑚𝑚

𝑦𝑦𝑚𝑚 − 𝑎𝑎(𝑥𝑥𝑚𝑚,𝑤𝑤, 𝑏𝑏) 2

• The training data consists of input output pairs
(𝑥𝑥1,𝑦𝑦1), … , (𝑥𝑥𝑀𝑀,𝑦𝑦𝑀𝑀)

• 𝑎𝑎(𝑥𝑥𝑚𝑚,𝑤𝑤, 𝑏𝑏) is the output of the neural network for the 𝑚𝑚𝑡𝑡𝑡

sample

• 𝑤𝑤 and 𝑏𝑏 are the weights and biases

26

Gradient of the Loss

• The derivative of the loss function is calculated as follows

𝜕𝜕𝐶𝐶(𝑤𝑤, 𝑏𝑏)
𝜕𝜕𝑤𝑤𝑘𝑘

=
1
𝑀𝑀
�
𝑚𝑚

𝑦𝑦𝑚𝑚 − 𝑎𝑎(𝑥𝑥𝑚𝑚,𝑤𝑤, 𝑏𝑏)
𝜕𝜕𝑎𝑎(𝑥𝑥𝑚𝑚,𝑤𝑤, 𝑏𝑏)

𝜕𝜕𝑤𝑤𝑘𝑘

• To compute the derivative of 𝑎𝑎, use the chain rule and the
derivative of the sigmoid function

𝑡𝑡𝜎𝜎(𝑧𝑧)
𝑡𝑡𝑧𝑧

= 𝜎𝜎 𝑧𝑧 ⋅ (1 − 𝜎𝜎 𝑧𝑧)

• This gets complicated quickly with lots of layers of neurons

27

Stochastic Gradient Descent

• To make the training more practical, stochastic gradient descent
is used instead of standard gradient descent

• Recall, the idea of stochastic gradient descent is to approximate
the gradient of a sum by sampling a few indices and averaging

𝛻𝛻𝑥𝑥�
𝑖𝑖=1

𝑛𝑛

𝑓𝑓𝑖𝑖(𝑥𝑥) ≈
1
𝐾𝐾
�
𝑘𝑘=1

𝐾𝐾

𝛻𝛻𝑥𝑥𝑓𝑓𝑖𝑖𝑘𝑘(𝑥𝑥)

here, for example, each 𝑜𝑜𝑘𝑘 is sampled uniformly at random
from {1, … ,𝑛𝑛}

28

Computing the Gradient
• We’ll compute the gradient for a single sample

𝐶𝐶 𝑤𝑤, 𝑏𝑏 =
1
2 𝑦𝑦 − 𝑎𝑎(𝑥𝑥,𝑤𝑤, 𝑏𝑏) 2

• Some definitions:

• 𝐿𝐿 is the number of layers

• 𝑎𝑎𝑗𝑗𝑙𝑙 is the output of the 𝑗𝑗𝑡𝑡𝑡 neuron on the 𝑡𝑡𝑡𝑡𝑡 layer

• 𝑧𝑧𝑗𝑗𝑙𝑙 is the weighted input of the 𝑗𝑗𝑡𝑡𝑡 neuron on the 𝑡𝑡𝑡𝑡𝑡 layer

𝑧𝑧𝑗𝑗𝑙𝑙 = �
𝑘𝑘

𝑤𝑤𝑗𝑗𝑘𝑘𝑙𝑙 𝑎𝑎𝑘𝑘𝑙𝑙−1 + 𝑏𝑏𝑗𝑗𝑙𝑙

• 𝛿𝛿𝑗𝑗𝑙𝑙 is defined to be 𝜕𝜕𝜕
𝜕𝜕𝑧𝑧𝑗𝑗

𝑙𝑙

29

Computing the Gradient

For the output layer, we have the following partial derivative

𝜕𝜕𝜕
𝜕𝜕𝑧𝑧𝑗𝑗𝐿𝐿

= − 𝑦𝑦𝑗𝑗 − 𝑎𝑎𝑗𝑗𝐿𝐿
𝜕𝜕𝑎𝑎𝑗𝑗𝐿𝐿

𝜕𝜕𝑧𝑧𝑗𝑗𝐿𝐿

= − 𝑦𝑦𝑗𝑗 − 𝑎𝑎𝑗𝑗𝐿𝐿
𝜕𝜕𝜎𝜎 𝑧𝑧𝑗𝑗𝐿𝐿

𝜕𝜕𝑧𝑧𝑗𝑗𝐿𝐿

= − 𝑦𝑦𝑗𝑗 − 𝑎𝑎𝑗𝑗𝐿𝐿 𝜎𝜎 𝑧𝑧𝑗𝑗𝐿𝐿 1 − 𝜎𝜎 𝑧𝑧𝑗𝑗𝐿𝐿

= 𝛿𝛿𝑗𝑗𝐿𝐿

• For simplicity, we will denote the vector of all such partials for each
node in the 𝑡𝑡𝑡𝑡𝑡 layer as 𝛿𝛿𝑙𝑙

30

Computing the Gradient
For the 𝐿𝐿 − 1 layer, we have the following partial derivative

𝜕𝜕𝜕
𝜕𝜕𝑧𝑧𝑘𝑘𝐿𝐿−1

= �
𝑗𝑗

𝑎𝑎𝑗𝑗𝐿𝐿 − 𝑦𝑦𝑗𝑗
𝜕𝜕𝑎𝑎𝑗𝑗𝐿𝐿

𝜕𝜕𝑧𝑧𝑘𝑘𝐿𝐿−1

= �
𝑗𝑗

𝑎𝑎𝑗𝑗𝐿𝐿 − 𝑦𝑦𝑗𝑗
𝜕𝜕𝜎𝜎 𝑧𝑧𝑗𝑗𝐿𝐿

𝜕𝜕𝑧𝑧𝑘𝑘𝐿𝐿−1

= �
𝑗𝑗

𝑎𝑎𝑗𝑗𝐿𝐿 − 𝑦𝑦𝑗𝑗 𝜎𝜎 𝑧𝑧𝑗𝑗𝐿𝐿 1 − 𝜎𝜎 𝑧𝑧𝑗𝑗𝐿𝐿
𝜕𝜕𝑧𝑧𝑗𝑗𝐿𝐿

𝜕𝜕𝑧𝑧𝑘𝑘𝐿𝐿−1

= �
𝑗𝑗

𝑎𝑎𝑗𝑗𝐿𝐿 − 𝑦𝑦𝑗𝑗 𝜎𝜎 𝑧𝑧𝑗𝑗𝐿𝐿 1 − 𝜎𝜎 𝑧𝑧𝑗𝑗𝐿𝐿
𝜕𝜕 ∑𝑘𝑘′ 𝑤𝑤𝑗𝑗𝑘𝑘′

𝐿𝐿 𝑎𝑎𝑘𝑘′
𝐿𝐿−1 + 𝑏𝑏𝑗𝑗𝐿𝐿

𝜕𝜕𝑧𝑧𝑘𝑘𝐿𝐿−1

= �
𝑗𝑗

𝑎𝑎𝑗𝑗𝐿𝐿 − 𝑦𝑦𝑗𝑗 𝜎𝜎 𝑧𝑧𝑗𝑗𝐿𝐿 1 − 𝜎𝜎 𝑧𝑧𝑗𝑗𝐿𝐿 𝜎𝜎 𝑧𝑧𝑘𝑘𝐿𝐿−1 1 − 𝜎𝜎 𝑧𝑧𝑘𝑘𝐿𝐿−1 𝑤𝑤𝑗𝑗𝑘𝑘𝐿𝐿

= (𝛿𝛿𝐿𝐿)𝑇𝑇𝑤𝑤∗𝑘𝑘𝐿𝐿 1 − 𝜎𝜎 𝑧𝑧𝑘𝑘𝐿𝐿−1 𝜎𝜎 𝑧𝑧𝑘𝑘𝐿𝐿−1

31

Computing the Gradient

• We can think of 𝑤𝑤𝑙𝑙 as a matrix

• This allows us to write

𝛿𝛿𝐿𝐿−1 = 𝛿𝛿𝐿𝐿 𝑇𝑇𝑤𝑤𝐿𝐿 𝑇𝑇 ∘ 1 − 𝜎𝜎 𝑧𝑧𝐿𝐿−1 ∘ 𝜎𝜎 𝑧𝑧𝐿𝐿−1

where 𝜎𝜎 𝑧𝑧𝐿𝐿−1 is the vector whose 𝑘𝑘𝑡𝑡𝑡 component is 𝜎𝜎 𝑧𝑧𝑘𝑘𝐿𝐿−1

• Applying the same strategy, for 𝑡𝑡 < 𝐿𝐿

𝛿𝛿𝑙𝑙 = 𝛿𝛿𝑙𝑙+1 𝑇𝑇𝑤𝑤𝑙𝑙+1
𝑇𝑇
∘ 1 − 𝜎𝜎 𝑧𝑧𝑙𝑙 ∘ 𝜎𝜎 𝑧𝑧𝑙𝑙

32

Computing the Gradient

• Now, for the partial derivatives that we care about

𝜕𝜕𝐶𝐶
𝜕𝜕𝑏𝑏𝑗𝑗𝑙𝑙

=
𝜕𝜕𝐶𝐶
𝜕𝜕𝑧𝑧𝑗𝑗𝑙𝑙

⋅
𝜕𝜕𝑧𝑧𝑗𝑗𝑙𝑙

𝜕𝜕𝑏𝑏𝑗𝑗𝑙𝑙
= 𝛿𝛿𝑗𝑗𝑙𝑙

𝜕𝜕𝐶𝐶
𝜕𝜕𝑤𝑤𝑗𝑗𝑘𝑘𝑙𝑙

=
𝜕𝜕𝐶𝐶
𝜕𝜕𝑧𝑧𝑗𝑗𝑙𝑙

⋅
𝜕𝜕𝑧𝑧𝑗𝑗𝑙𝑙

𝜕𝜕𝑤𝑤𝑗𝑗𝑘𝑘𝑙𝑙
= 𝛿𝛿𝑗𝑗𝑙𝑙𝑎𝑎𝑘𝑘𝑙𝑙−1

• We can compute these derivatives one layer at a time!

33

Backpropagation

• Compute the inputs/outputs for each layer by starting at the input
layer and applying the sigmoid functions

• Compute 𝛿𝛿𝐿𝐿 for the output layer

𝛿𝛿𝑗𝑗𝐿𝐿 = − 𝑦𝑦𝑗𝑗 − 𝑎𝑎𝑗𝑗𝐿𝐿 𝜎𝜎 𝑧𝑧𝑗𝑗𝐿𝐿 1 − 𝜎𝜎 𝑧𝑧𝑗𝑗𝐿𝐿

• Starting from 𝑡𝑡 = 𝐿𝐿 − 1 and working backwards, compute

𝛿𝛿𝑙𝑙 = 𝛿𝛿𝑙𝑙+1 𝑇𝑇𝑤𝑤𝑙𝑙+1
𝑇𝑇
∘ 𝜎𝜎 𝑧𝑧𝑙𝑙 ∘ 1 − 𝜎𝜎 𝑧𝑧𝑙𝑙

• Perform gradient descent

𝑏𝑏𝑗𝑗𝑙𝑙 = 𝑏𝑏𝑗𝑗𝑙𝑙 − 𝛾𝛾 ⋅ 𝛿𝛿𝑗𝑗𝑙𝑙

𝑤𝑤𝑗𝑗𝑘𝑘𝑙𝑙 = 𝑤𝑤𝑗𝑗𝑘𝑘𝑙𝑙 − 𝛾𝛾 ⋅ 𝛿𝛿𝑗𝑗𝑙𝑙𝑎𝑎𝑘𝑘𝑙𝑙−1

34

Backpropagation

• Backpropagation converges to a local minimum (loss is not
convex in the weights and biases)

• Like EM, can just run it several times with different
initializations

• Training can take a very long time (even with stochastic
gradient descent)

• Prediction after learning is fast

• Sometimes include a momentum term 𝛼𝛼 in the gradient
update

𝑤𝑤 𝑡𝑡 = 𝑤𝑤 𝑡𝑡 − 1 − 𝛾𝛾 ⋅ 𝛻𝛻𝑤𝑤𝐶𝐶 𝑡𝑡 − 1 + 𝛼𝛼 −𝛾𝛾 ⋅ 𝛻𝛻𝑤𝑤𝐶𝐶(𝑡𝑡 − 2)
35

Overfitting

36

Overfitting

37

Neural Networks in Practice

• Many ways to improve weight learning in NNs

• Use a regularizer! (better generalization?)

38

Regularized Loss

• Penalize learning large weights

𝐶𝐶′ 𝑤𝑤,𝑏𝑏 =
1
2𝑀𝑀

�
𝑚𝑚

𝑦𝑦𝑚𝑚 − 𝑎𝑎 𝑥𝑥𝑚𝑚,𝑤𝑤, 𝑏𝑏 2 +
𝜆𝜆
2

𝑤𝑤 2
2

• Can still use the backpropagation algorithm in this setting

• ℓ1 regularization can also be useful

• Regularization can help with convergence, 𝜆𝜆 should be chosen
with a validation set

39

Neural Networks in Practice

40 Zhang et al. 2016

Neural Networks in Practice

• Many ways to improve weight learning in NNs

• Use a regularizer! (better generalization?)

• Try other loss functions, e.g., the cross entropy

−𝑦𝑦 log 𝑎𝑎 𝑥𝑥,𝑤𝑤, 𝑏𝑏 − 1 − 𝑦𝑦 log(1 − 𝑎𝑎 𝑥𝑥,𝑤𝑤, 𝑏𝑏)

• Initialize the weights of the network more cleverly

• Random initializations are likely to be far from optimal

• The learning procedure can have numerical difficulties if there
are a large number of layers

41

Dropout

• A heuristic bagging-style approach applied to neural networks to
counteract overfitting

• Randomly remove a certain percentage of the neurons from
the network and then train only on the remaining neurons

• The networks are recombined using an approximate
averaging technique (keeping around too many networks and
doing proper bagging can be costly in practice)

42

Other Techniques

• Early stopping

• Stop the learning early in the hopes that this prevents
overfitting

• Parameter tying

• Assume some of the weights in the model are the same to
reduce the dimensionality of the learning problem

• Also a way to learn “simpler” models

• Can lead to significant compression in neural networks (i.e.,
>90%)

43

Other Techniques

44

Other Ideas
• Convolutional neural networks

• Instead of the output of every neuron at layer 𝑡𝑡 being used as
an input to every neuron at layer 𝑡𝑡 + 1, the edges between
layers are chosen more locally

• Many tied weights and biases (i.e., convolution nets apply
the same process to many different local chunks of neurons)

• Often combined with pooling layers (i.e., layers that, say, half
the number of neurons by replacing small regions of neurons
with their maximum output)

• Used extensively for image classification tasks

45

Momentum

• Standard gradient descent does not adjust its step size based on
local function information, e.g., curvature of the function

• This can result in slow convergence

46

Momentum

• Gradient descent with momentum adds an inertia term

𝑥𝑥(𝑡𝑡+1) = 𝑥𝑥(𝑡𝑡) − 𝛾𝛾∇𝑓𝑓 𝑥𝑥 𝑡𝑡 + 𝛽𝛽 𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡−1)

47

Momentum

• Gradient descent with momentum adds an inertia term

𝑥𝑥(𝑡𝑡+1) = 𝑥𝑥(𝑡𝑡) − 𝛾𝛾∇𝑓𝑓 𝑥𝑥 𝑡𝑡 + 𝛽𝛽 𝑥𝑥(𝑡𝑡−1) − 𝛾𝛾∇𝑓𝑓 𝑥𝑥 𝑡𝑡−1 − 𝑥𝑥(𝑡𝑡−1)

48

Momentum

• Gradient descent with momentum adds an inertia term

𝑥𝑥(𝑡𝑡+1) = 𝑥𝑥(𝑡𝑡) − 𝛾𝛾∇𝑓𝑓 𝑥𝑥 𝑡𝑡 − 𝛾𝛾𝛽𝛽∇𝑓𝑓 𝑥𝑥 𝑡𝑡−1

• If the gradients are similar in two consecutive times steps
you get an extra boost!

49

Momentum

50

Accelerated Gradient Methods

51 Image: Sebastian Ruder

Neural Networks in Practice

• Oftentimes you have a small amount of labeled training data for
your real domain

• It might not be enough to train a deep NN for the task

• Can you still apply NNs?

52

Neural Networks in Practice

• Oftentimes you have a small amount of labeled training data for
your real domain

• It might not be enough to train a deep NN for the task

• Can you still apply NNs?

Yes! Use transfer learning!

53

Transfer Learning

• Idea: take a model trained in a domain with lots of training data
and transfer it to a smaller, data-limited domain

• The ML task may or may not be the same in both domains

• Lots of ways to do this… one way is to fine-tune a pretrained
model

• Example: Bounding box detection using a pretrained model

54

Bounding Box Detection
• After 15 training epochs on new training data…
• Confidence threshold = 0.0

• Ap50 without Training (pretrained weights) = 0.0004
• Ap50 with Training (trained weights) = 31.64

• Confidence threshold = 0.05
• Ap50 without Training (pretrained weights) = 0.0002
• Ap50 with Training (trained weights) = 30.975

• Confidence threshold = 0.3
• Ap50 without Training (pretrained weights) = nan
• Ap50 with Training (trained weights) = 28.21

55

Bounding Box Detection (.3)

56

Trained weights output

Input image

Bounding Box Detection (.3)

57

Trained weights output

Input image

	Neural Networks
	Handwritten Digit Recognition
	Neural Networks
	Neural Networks
	The Perceptron
	Perceptrons
	Perceptron for NOT
	Perceptron for OR
	Perceptron for OR
	Perceptron for AND
	Perceptron for AND
	Perceptron for XOR
	Perceptron for XOR
	Neural Networks
	Beyond Perceptrons
	The Sigmoid Neuron
	The Sigmoid Function
	Rectified Linear Units
	Softmax
	Multilayer Neural Networks
	Multilayer Neural Networks
	Neural Network for Digit Classification
	Neural Network for Digit Classification
	Expressiveness of NNs
	Expressiveness of NNs
	Training Neural Networks
	Gradient of the Loss
	Stochastic Gradient Descent
	Computing the Gradient
	Computing the Gradient
	Computing the Gradient
	Computing the Gradient
	Computing the Gradient
	Backpropagation
	Backpropagation
	Overfitting
	Overfitting
	Neural Networks in Practice
	Regularized Loss
	Neural Networks in Practice
	Neural Networks in Practice
	Dropout
	Other Techniques
	Other Techniques
	Other Ideas
	Momentum
	Momentum
	Momentum
	Momentum
	Momentum
	Accelerated Gradient Methods
	Neural Networks in Practice
	Neural Networks in Practice
	Transfer Learning
	Bounding Box Detection
	Bounding Box Detection (.3)
	Bounding Box Detection (.3)

