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What is ML?
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What is ML?

“A computer program is said to learn from experience E with 
respect to some task T and some performance measure P, if its 

performance on T, as measured by P, improves with experience E.” 

- Tom Mitchell
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Course Info.
• Instructor:  Nicholas Ruozzi

• Office:  ECSS 3.409

• Office hours: M 1pm-2pm, W 10:30am-11:30am

• TA:  ?

• Office hours and location: ?

• Course website

• Book: none required

• Piazza (online forum):  sign-up link on eLearning
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https://personal.utdallas.edu/%7Enrr150130/cs4375/2023fa/


Optional Recitation Section

• New this semester:  a recitation section for this course

• This supplemental addition to the course is strictly optional

• Instructor:  Jim Amato

• Where: ECSW 3.250

• When: Thursdays, 5:30pm-6:30pm
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Prerequisites

• CS3345, Data Structures and Algorithms

• CS3341, Probability and Statistics in Computer Science

• “Mathematical sophistication”

• Basic probability

• Linear algebra: eigenvalues/vectors, matrices, vectors, etc.

• Multivariate calculus: derivatives, gradients, etc.

• I’ll review some concepts as we come to them, but you should 
brush up on areas that you aren’t as comfortable
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Course Topics
• Dimensionality reduction

• PCA
• Matrix Factorizations

• Learning
• Supervised, unsupervised, active, reinforcement, …
• SVMs & kernel methods
• Decision trees, k-NN, logistic regression, … 
• Parameter estimation:  Bayesian methods, MAP estimation, maximum 

likelihood estimation, expectation maximization, …
• Clustering:  k-means & spectral clustering

• Probabilistic models
• Bayesian networks
• Naïve Bayes

• Neural networks
• Evaluation

• AOC, cross-validation, precision/recall
• Statistical methods

• Boosting, bagging, bootstrapping
• Sampling
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Grading

• 5-6 problem sets (50%) 

• See collaboration policy on the web

• Mix of theory and programming (in MATLAB or Python)

• Available and turned in on eLearning

• Approximately one assignment every two weeks

• Midterm Exam (20%)

• Final Exam (30%)

• Attendance policy?

-subject to change-
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Basic Machine Learning Paradigm

• Collect data

• Build a model using “training” data

• Use model to make predictions
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Supervised Learning

• Input: 𝑥𝑥(1),𝑦𝑦(1) , … , (𝑥𝑥(𝑀𝑀),𝑦𝑦(𝑀𝑀))

• 𝑥𝑥(𝑚𝑚) is the 𝑚𝑚𝑡𝑡𝑡 data item and 𝑦𝑦(𝑚𝑚) is the 𝑚𝑚𝑡𝑡𝑡 label

• Goal:  find a function 𝑓𝑓 such that 𝑓𝑓 𝑥𝑥(𝑚𝑚)  is a “good 
approximation” to 𝑦𝑦(𝑚𝑚)

• Can use it to predict 𝑦𝑦 values for previously unseen 𝑥𝑥 values
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Examples of Supervised Learning

• Spam email detection

• Handwritten digit recognition

• Stock market prediction

• More?
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Supervised Learning

• Hypothesis space:  set of allowable functions 𝑓𝑓:𝑋𝑋 → 𝑌𝑌

• Goal:  find the “best” element of the hypothesis space

• How do we measure the quality of 𝑓𝑓?
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Supervised Learning

• Linear regression in ℝ

• Input:  pairs of points 𝑥𝑥(1),𝑦𝑦(1) , … , (𝑥𝑥(𝑀𝑀),𝑦𝑦(𝑀𝑀)) with 
𝑥𝑥(𝑚𝑚) ∈ ℝ and 𝑦𝑦(𝑚𝑚) ∈ ℝ

• Hypothesis space:  set of linear functions 𝑓𝑓 𝑥𝑥 = 𝑎𝑎𝑥𝑥 + 𝑏𝑏 
with 𝑎𝑎, 𝑏𝑏 ∈ ℝ

• Error metric:  squared difference between the predicted 
value and the actual value 
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Regression

𝑥𝑥

𝑦𝑦
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Regression

𝑥𝑥

𝑦𝑦

Hypothesis class:  linear functions 𝑓𝑓 𝑥𝑥 = 𝑎𝑎𝑥𝑥 + 𝑏𝑏

How do we compute the error of a specific hypothesis?
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Linear Regression

• For any data point, 𝑥𝑥, the learning algorithm predicts 𝑓𝑓(𝑥𝑥)

• Can assess the fit using a squared loss function

𝐿𝐿 𝑓𝑓 =
1
𝑀𝑀
�
𝑚𝑚

𝑓𝑓 𝑥𝑥 𝑚𝑚 − 𝑦𝑦 𝑚𝑚 2

• Want to minimize the average loss on the training data

• The optimal linear hypothesis is then given by

min
𝑎𝑎,𝑏𝑏

1
𝑀𝑀
�
𝑚𝑚

𝑎𝑎𝑥𝑥(𝑚𝑚) + 𝑏𝑏 − 𝑦𝑦(𝑚𝑚) 2
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Linear Regression

min
𝑎𝑎,𝑏𝑏

1
𝑀𝑀
�
𝑚𝑚

𝑎𝑎𝑥𝑥(𝑚𝑚) + 𝑏𝑏 − 𝑦𝑦(𝑚𝑚) 2

• How do we find the optimal 𝑎𝑎 and 𝑏𝑏?
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Linear Regression

min
𝑎𝑎,𝑏𝑏

1
𝑀𝑀
�
𝑚𝑚

𝑎𝑎𝑥𝑥(𝑚𝑚) + 𝑏𝑏 − 𝑦𝑦(𝑚𝑚) 2

• How do we find the optimal 𝑎𝑎 and 𝑏𝑏?

• Solution 1:  take derivatives and solve 
                     (there is a closed form solution!)

• Solution 2:  use gradient descent
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Linear Regression

min
𝑎𝑎,𝑏𝑏

1
𝑀𝑀
�
𝑚𝑚

𝑎𝑎𝑥𝑥(𝑚𝑚) + 𝑏𝑏 − 𝑦𝑦(𝑚𝑚) 2

• How do we find the optimal 𝑎𝑎 and 𝑏𝑏?

• Solution 1:  take derivatives and solve 
                     (there is a closed form solution!)

• Solution 2:  use gradient descent

• This approach is much more likely to be useful for general 
loss functions
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Gradient Descent

Iterative method to minimize a (convex) differentiable function 𝑓𝑓

A function 𝑓𝑓:ℝ𝑛𝑛 → ℝ is convex if 

𝜆𝜆𝑓𝑓 𝑥𝑥 + 1 − 𝜆𝜆 𝑓𝑓 𝑦𝑦 ≥ 𝑓𝑓 𝜆𝜆𝑥𝑥 + 1 − 𝜆𝜆 𝑦𝑦

for all 𝜆𝜆 ∈ [0,1] and all 𝑥𝑥,𝑦𝑦 ∈ ℝ𝑛𝑛
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Gradient Descent

Iterative method to minimize a (convex) differentiable function 𝑓𝑓

• Pick an initial point 𝑥𝑥0

• Iterate until convergence

𝑥𝑥𝑡𝑡+1 = 𝑥𝑥𝑡𝑡 − 𝛾𝛾𝑡𝑡𝛻𝛻𝑓𝑓(𝑥𝑥𝑡𝑡)

     where 𝛾𝛾𝑡𝑡 is the 𝑡𝑡𝑡𝑡𝑡 step size (sometimes called learning rate)
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Gradient Descent
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𝑓𝑓 𝑥𝑥 = 𝑥𝑥2

𝑥𝑥(0) = −4
Step size:  .8



Gradient Descent
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𝑓𝑓 𝑥𝑥 = 𝑥𝑥2

𝑥𝑥(1) = −4 −  .8 ⋅ 2 ⋅ (−4)
𝑥𝑥(0) = −4
Step size:  .8



Gradient Descent
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𝑓𝑓 𝑥𝑥 = 𝑥𝑥2

𝑥𝑥(1) = 2.4
𝑥𝑥(0) = −4
Step size:  .8



Gradient Descent
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𝑓𝑓 𝑥𝑥 = 𝑥𝑥2

𝑥𝑥(1) = 0.4

𝑥𝑥(2) = 2.4 −  .8 ⋅ 2 ⋅ 2.4
𝑥𝑥(1) = 2.4
𝑥𝑥(0) = −4
Step size:  .8



Gradient Descent
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𝑓𝑓 𝑥𝑥 = 𝑥𝑥2

𝑥𝑥(2) = −1.44
𝑥𝑥(1) = 2.4
𝑥𝑥(0) = −4
Step size:  .8



Gradient Descent
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𝑓𝑓 𝑥𝑥 = 𝑥𝑥2

𝑥𝑥(2) = −1.44

𝑥𝑥(1) = 2.4
𝑥𝑥(0) = −4

𝑥𝑥(5) = 0.31104
𝑥𝑥(4) = −0.5184
𝑥𝑥(3) = .864

𝑥𝑥(30) = −8.84296𝑒𝑒 − 07

Step size:  .8



Gradient Descent
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Step size: .9



Gradient Descent
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Step size: .2



Gradient Descent

min
𝑎𝑎,𝑏𝑏

1
𝑀𝑀
�
𝑚𝑚

𝑎𝑎𝑥𝑥(𝑚𝑚) + 𝑏𝑏 − 𝑦𝑦(𝑚𝑚) 2

• What is the gradient of this function?

• What does a gradient descent iteration look like for this simple 
regression problem?

(on board)
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Gradient Descent

31



Linear Regression

• In higher dimensions, the linear regression problem is 
essentially the same with 𝑥𝑥(𝑚𝑚) ∈ ℝ𝑛𝑛

min
𝑎𝑎∈ℝ𝑛𝑛,𝑏𝑏

1
𝑀𝑀
�
𝑚𝑚

𝑎𝑎𝑇𝑇𝑥𝑥(𝑚𝑚) + 𝑏𝑏 − 𝑦𝑦(𝑚𝑚) 2

• Can still use gradient descent to minimize this

• Not much more difficult than the 𝑛𝑛 = 1 case
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Gradient Descent

• Gradient descent converges under certain technical conditions 
on the function 𝑓𝑓 and the step size 𝛾𝛾𝑡𝑡

• If 𝑓𝑓 is convex, then any fixed point of gradient descent must 
correspond to a global minimum of 𝑓𝑓

• In general, for a nonconvex function, may only converge to a 
local optimum
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Gradient Descent
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Step size matters!



Gradient Descent
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Step size matters!



Regression
• What if we enlarge the hypothesis class?

• Quadratic functions: 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐

• 𝑘𝑘-degree polynomials:  𝑎𝑎𝑘𝑘𝑥𝑥𝑘𝑘 + 𝑎𝑎𝑘𝑘−1𝑥𝑥𝑘𝑘−1 + ⋯+ 𝑎𝑎1𝑥𝑥 + 𝑎𝑎0
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min
𝑎𝑎𝑘𝑘,…,𝑎𝑎0

1
𝑀𝑀
�
𝑚𝑚

𝑎𝑎𝑘𝑘 𝑥𝑥 𝑚𝑚 𝑘𝑘
+ ⋯+ 𝑎𝑎1𝑥𝑥 𝑚𝑚 + 𝑎𝑎0  − 𝑦𝑦(𝑚𝑚)
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Regression
• What if we enlarge the hypothesis class?

• Quadratic functions: 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐

• 𝑘𝑘-degree polynomials:  𝑎𝑎𝑘𝑘𝑥𝑥𝑘𝑘 + 𝑎𝑎𝑘𝑘−1𝑥𝑥𝑘𝑘−1 + ⋯+ 𝑎𝑎1𝑥𝑥 + 𝑎𝑎0

• Can we always learn “better” with a larger hypothesis class?
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Regression
• What if we enlarge the hypothesis class?

• Quadratic functions: 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐

• 𝑘𝑘-degree polynomials:  𝑎𝑎𝑘𝑘𝑥𝑥𝑘𝑘 + 𝑎𝑎𝑘𝑘−1𝑥𝑥𝑘𝑘−1 + ⋯+ 𝑎𝑎1𝑥𝑥 + 𝑎𝑎0

• Can we always learn “better” with a larger hypothesis class?
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Regression

• Larger hypothesis space always decreases the cost function, 
but this does NOT necessarily mean better predictive 
performance

• This phenomenon is known as overfitting 

• Ideally, we would select the simplest hypothesis consistent 
with the observed data

• In practice, we cannot simply evaluate our learned hypothesis 
on the training data, we want it to perform well on unseen 
data (otherwise, we can just memorize the training data!)

• Report the loss on some held out test data (i.e., data not 
used as part of the training process)
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