

### CS 4375 Introduction to Machine Learning

#### Nicholas Ruozzi University of Texas at Dallas

Slides adapted from David Sontag and Vibhav Gogate

## What is ML?





"A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E."

- Tom Mitchell

# Course Info.



- Instructor: Nicholas Ruozzi
  - Office: ECSS 3.409
  - Office hours: M 1pm-2pm, W 10:30am-11:30am
- TA: ?
  - Office hours and location: ?
- <u>Course website</u>
- Book: none required
- Piazza (online forum): sign-up link on eLearning

# **Optional Recitation Section**



- New this semester: a recitation section for this course
- This supplemental addition to the course is strictly **optional** 
  - Instructor: Jim Amato
  - Where: ECSW 3.250
  - When: Thursdays, 5:30pm-6:30pm

## Prerequisites



- CS3345, Data Structures and Algorithms
- CS3341, Probability and Statistics in Computer Science
- "Mathematical sophistication"
  - Basic probability
  - Linear algebra: eigenvalues/vectors, matrices, vectors, etc.
  - Multivariate calculus: derivatives, gradients, etc.
- I'll review some concepts as we come to them, but you should brush up on areas that you aren't as comfortable

# **Course Topics**



- Dimensionality reduction
  - PCA
  - Matrix Factorizations
- Learning
  - Supervised, unsupervised, active, reinforcement, ...
  - SVMs & kernel methods
  - Decision trees, k-NN, logistic regression, ...
  - Parameter estimation: Bayesian methods, MAP estimation, maximum likelihood estimation, expectation maximization, ...
  - Clustering: k-means & spectral clustering
- Probabilistic models
  - Bayesian networks
  - Naïve Bayes
- Neural networks
- Evaluation
  - AOC, cross-validation, precision/recall
- Statistical methods
  - Boosting, bagging, bootstrapping
  - Sampling

# Grading



- 5-6 problem sets (50%)
  - See collaboration policy on the web
  - Mix of theory and programming (in MATLAB or Python)
  - Available and turned in on eLearning
  - Approximately one assignment every two weeks
- Midterm Exam (20%)
- Final Exam (30%)
- Attendance policy?

# **Basic Machine Learning Paradigm**



- Collect data
- Build a model using "training" data
- Use model to make predictions



- Input:  $(x^{(1)}, y^{(1)}), \dots, (x^{(M)}, y^{(M)})$ 
  - $x^{(m)}$  is the  $m^{th}$  data item and  $y^{(m)}$  is the  $m^{th}$  label
- **Goal:** find a function f such that  $f(x^{(m)})$  is a "good approximation" to  $y^{(m)}$ 
  - Can use it to predict *y* values for previously unseen *x* values

# **Examples of Supervised Learning**



- Spam email detection
- Handwritten digit recognition
- Stock market prediction
- More?



- Hypothesis space: set of allowable functions  $f: X \to Y$
- Goal: find the "best" element of the hypothesis space
  - How do we measure the quality of *f*?

# **Supervised Learning**



- Linear regression in  $\mathbb{R}$ 
  - Input: pairs of points  $(x^{(1)}, y^{(1)}), \dots, (x^{(M)}, y^{(M)})$  with  $x^{(m)} \in \mathbb{R}$  and  $y^{(m)} \in \mathbb{R}$
  - Hypothesis space: set of linear functions f(x) = ax + b
    with a, b ∈ ℝ
  - Error metric: squared difference between the predicted value and the actual value









How do we compute the error of a specific hypothesis?



- For any data point, x, the learning algorithm predicts f(x)
- Can assess the fit using a squared loss function

$$L(f) = \frac{1}{M} \sum_{m} (f(x^{(m)}) - y^{(m)})^{2}$$

- Want to minimize the average loss on the training data
- The optimal linear hypothesis is then given by

$$\min_{a,b} \frac{1}{M} \sum_{m} \left( a x^{(m)} + b - y^{(m)} \right)^2$$



$$\min_{a,b} \frac{1}{M} \sum_{m} \left( a x^{(m)} + b - y^{(m)} \right)^2$$

• How do we find the optimal *a* and *b*?



$$\min_{a,b} \frac{1}{M} \sum_{m} \left( a x^{(m)} + b - y^{(m)} \right)^2$$

- How do we find the optimal *a* and *b*?
  - Solution 1: take derivatives and solve (there is a closed form solution!)
  - Solution 2: use gradient descent



$$\min_{a,b} \frac{1}{M} \sum_{m} \left( a x^{(m)} + b - y^{(m)} \right)^2$$

- How do we find the optimal *a* and *b*?
  - Solution 1: take derivatives and solve (there is a closed form solution!)
  - Solution 2: use gradient descent
    - This approach is much more likely to be useful for general loss functions



Iterative method to minimize a (convex) differentiable function f

A function  $f: \mathbb{R}^n \to \mathbb{R}$  is convex if

$$\lambda f(x) + (1-\lambda)f(y) \geq f(\lambda x + (1-\lambda)y)$$

for all  $\lambda \in [0,1]$  and all  $x, y \in \mathbb{R}^n$ 



Iterative method to minimize a (convex) differentiable function f

- Pick an initial point  $x_0$
- Iterate until convergence

$$x_{t+1} = x_t - \gamma_t \nabla f(x_t)$$

where  $\gamma_t$  is the  $t^{th}$  step size (sometimes called learning rate)





























Step size: .9





Step size: .2



$$\min_{a,b} \frac{1}{M} \sum_{m} \left( a x^{(m)} + b - y^{(m)} \right)^2$$

- What is the gradient of this function?
- What does a gradient descent iteration look like for this simple regression problem?

(on board)







• In higher dimensions, the linear regression problem is essentially the same with  $x^{(m)} \in \mathbb{R}^n$ 

$$\min_{a \in \mathbb{R}^n, b} \frac{1}{M} \sum_m \left( a^T x^{(m)} + b - y^{(m)} \right)^2$$

- Can still use gradient descent to minimize this
  - Not much more difficult than the n = 1 case



- Gradient descent converges under certain technical conditions on the function f and the step size  $\gamma_t$ 
  - If *f* is convex, then any fixed point of gradient descent must correspond to a global minimum of *f*
  - In general, for a nonconvex function, may only converge to a local optimum





Step size matters!





Step size matters!



- What if we enlarge the hypothesis class?
  - Quadratic functions:  $ax^2 + bx + c$
  - k-degree polynomials:  $a_k x^k + a_{k-1} x^{k-1} + \dots + a_1 x + a_0$

$$\min_{a_k,\dots,a_0} \frac{1}{M} \sum_m \left( a_k (x^{(m)})^k + \dots + a_1 x^{(m)} + a_0 - y^{(m)} \right)^2$$



- What if we enlarge the hypothesis class?
  - Quadratic functions:  $ax^2 + bx + c$
  - k-degree polynomials:  $a_k x^k + a_{k-1} x^{k-1} + \dots + a_1 x + a_0$
- Can we always learn "better" with a larger hypothesis class?



- What if we enlarge the hypothesis class?
  - Quadratic functions:  $ax^2 + bx + c$
  - k-degree polynomials:  $a_k x^k + a_{k-1} x^{k-1} + \dots + a_1 x + a_0$
- Can we always learn "better" with a larger hypothesis class?





- Larger hypothesis space always decreases the cost function, but this does NOT necessarily mean better predictive performance
  - This phenomenon is known as overfitting
  - Ideally, we would select the simplest hypothesis consistent with the observed data
- In practice, we cannot simply evaluate our learned hypothesis on the training data, we want it to perform well on unseen data (otherwise, we can just memorize the training data!)
  - Report the loss on some held out test data (i.e., data not used as part of the training process)