

CS 4375 Introduction to Machine Learning

Nicholas Ruozzi University of Texas at Dallas

Slides adapted from David Sontag and Vibhav Gogate

What is ML?

"A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E."

- Tom Mitchell

Course Info.

- Instructor: Nicholas Ruozzi
 - Office: ECSS 3.409
 - Office hours: M 1pm-2pm, W 10:30am-11:30am
- TA: ?
 - Office hours and location: ?
- <u>Course website</u>
- Book: none required
- Piazza (online forum): sign-up link on eLearning

Optional Recitation Section

- New this semester: a recitation section for this course
- This supplemental addition to the course is strictly **optional**
 - Instructor: Jim Amato
 - Where: ECSW 3.250
 - When: Thursdays, 5:30pm-6:30pm

Prerequisites

- CS3345, Data Structures and Algorithms
- CS3341, Probability and Statistics in Computer Science
- "Mathematical sophistication"
 - Basic probability
 - Linear algebra: eigenvalues/vectors, matrices, vectors, etc.
 - Multivariate calculus: derivatives, gradients, etc.
- I'll review some concepts as we come to them, but you should brush up on areas that you aren't as comfortable

Course Topics

- Dimensionality reduction
 - PCA
 - Matrix Factorizations
- Learning
 - Supervised, unsupervised, active, reinforcement, ...
 - SVMs & kernel methods
 - Decision trees, k-NN, logistic regression, ...
 - Parameter estimation: Bayesian methods, MAP estimation, maximum likelihood estimation, expectation maximization, ...
 - Clustering: k-means & spectral clustering
- Probabilistic models
 - Bayesian networks
 - Naïve Bayes
- Neural networks
- Evaluation
 - AOC, cross-validation, precision/recall
- Statistical methods
 - Boosting, bagging, bootstrapping
 - Sampling

Grading

- 5-6 problem sets (50%)
 - See collaboration policy on the web
 - Mix of theory and programming (in MATLAB or Python)
 - Available and turned in on eLearning
 - Approximately one assignment every two weeks
- Midterm Exam (20%)
- Final Exam (30%)
- Attendance policy?

Basic Machine Learning Paradigm

- Collect data
- Build a model using "training" data
- Use model to make predictions

- Input: $(x^{(1)}, y^{(1)}), \dots, (x^{(M)}, y^{(M)})$
 - $x^{(m)}$ is the m^{th} data item and $y^{(m)}$ is the m^{th} label
- **Goal:** find a function f such that $f(x^{(m)})$ is a "good approximation" to $y^{(m)}$
 - Can use it to predict *y* values for previously unseen *x* values

Examples of Supervised Learning

- Spam email detection
- Handwritten digit recognition
- Stock market prediction
- More?

- Hypothesis space: set of allowable functions $f: X \to Y$
- Goal: find the "best" element of the hypothesis space
 - How do we measure the quality of *f*?

Supervised Learning

- Linear regression in \mathbb{R}
 - Input: pairs of points $(x^{(1)}, y^{(1)}), \dots, (x^{(M)}, y^{(M)})$ with $x^{(m)} \in \mathbb{R}$ and $y^{(m)} \in \mathbb{R}$
 - Hypothesis space: set of linear functions f(x) = ax + b
 with a, b ∈ ℝ
 - Error metric: squared difference between the predicted value and the actual value

How do we compute the error of a specific hypothesis?

- For any data point, x, the learning algorithm predicts f(x)
- Can assess the fit using a squared loss function

$$L(f) = \frac{1}{M} \sum_{m} (f(x^{(m)}) - y^{(m)})^{2}$$

- Want to minimize the average loss on the training data
- The optimal linear hypothesis is then given by

$$\min_{a,b} \frac{1}{M} \sum_{m} \left(a x^{(m)} + b - y^{(m)} \right)^2$$

$$\min_{a,b} \frac{1}{M} \sum_{m} \left(a x^{(m)} + b - y^{(m)} \right)^2$$

• How do we find the optimal *a* and *b*?

$$\min_{a,b} \frac{1}{M} \sum_{m} \left(a x^{(m)} + b - y^{(m)} \right)^2$$

- How do we find the optimal *a* and *b*?
 - Solution 1: take derivatives and solve (there is a closed form solution!)
 - Solution 2: use gradient descent

$$\min_{a,b} \frac{1}{M} \sum_{m} \left(a x^{(m)} + b - y^{(m)} \right)^2$$

- How do we find the optimal *a* and *b*?
 - Solution 1: take derivatives and solve (there is a closed form solution!)
 - Solution 2: use gradient descent
 - This approach is much more likely to be useful for general loss functions

Iterative method to minimize a (convex) differentiable function f

A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if

$$\lambda f(x) + (1-\lambda)f(y) \geq f(\lambda x + (1-\lambda)y)$$

for all $\lambda \in [0,1]$ and all $x, y \in \mathbb{R}^n$

Iterative method to minimize a (convex) differentiable function f

- Pick an initial point x_0
- Iterate until convergence

$$x_{t+1} = x_t - \gamma_t \nabla f(x_t)$$

where γ_t is the t^{th} step size (sometimes called learning rate)

Step size: .9

Step size: .2

$$\min_{a,b} \frac{1}{M} \sum_{m} \left(a x^{(m)} + b - y^{(m)} \right)^2$$

- What is the gradient of this function?
- What does a gradient descent iteration look like for this simple regression problem?

(on board)

• In higher dimensions, the linear regression problem is essentially the same with $x^{(m)} \in \mathbb{R}^n$

$$\min_{a \in \mathbb{R}^n, b} \frac{1}{M} \sum_m \left(a^T x^{(m)} + b - y^{(m)} \right)^2$$

- Can still use gradient descent to minimize this
 - Not much more difficult than the n = 1 case

- Gradient descent converges under certain technical conditions on the function f and the step size γ_t
 - If *f* is convex, then any fixed point of gradient descent must correspond to a global minimum of *f*
 - In general, for a nonconvex function, may only converge to a local optimum

Step size matters!

Step size matters!

- What if we enlarge the hypothesis class?
 - Quadratic functions: $ax^2 + bx + c$
 - k-degree polynomials: $a_k x^k + a_{k-1} x^{k-1} + \dots + a_1 x + a_0$

$$\min_{a_k,\dots,a_0} \frac{1}{M} \sum_m \left(a_k (x^{(m)})^k + \dots + a_1 x^{(m)} + a_0 - y^{(m)} \right)^2$$

- What if we enlarge the hypothesis class?
 - Quadratic functions: $ax^2 + bx + c$
 - k-degree polynomials: $a_k x^k + a_{k-1} x^{k-1} + \dots + a_1 x + a_0$
- Can we always learn "better" with a larger hypothesis class?

- What if we enlarge the hypothesis class?
 - Quadratic functions: $ax^2 + bx + c$
 - k-degree polynomials: $a_k x^k + a_{k-1} x^{k-1} + \dots + a_1 x + a_0$
- Can we always learn "better" with a larger hypothesis class?

- Larger hypothesis space always decreases the cost function, but this does NOT necessarily mean better predictive performance
 - This phenomenon is known as overfitting
 - Ideally, we would select the simplest hypothesis consistent with the observed data
- In practice, we cannot simply evaluate our learned hypothesis on the training data, we want it to perform well on unseen data (otherwise, we can just memorize the training data!)
 - Report the loss on some held out test data (i.e., data not used as part of the training process)