

Collaborative Filtering

Nicholas Ruozzi University of Texas at Dallas

based on the slides of Alex Smola & Narges Razavian

- Combining information among collaborating entities to make recommendations and predictions
 - Can be viewed as a supervised learning problem (with some caveats)
 - Because of its many, many applications, it gets a special name

- Movie/TV recommendation (Netflix, Hulu, iTunes)
- Product recommendation (Amazon)
- Social recommendation (Facebook)
- News content recommendation (Yahoo)
- Priority inbox & spam filtering (Google)
- Online dating (OK Cupid)

Training Data

user	movie	rating
1	14	3
1	200	4
1	315	1
2	15	5
2	136	1
3	235	3
4	79	3

Test Data

user	movie	rating
1	50	?
1	28	?
2	94	?
2	32	?
3	11	?
4	99	?
4	54	?

Recommender Systems

- Content-based recommendations
 - Recommendations based on a user profile (specific interests) or previously consumed content
- Collaborative filtering
 - Recommendations based on the content preferences of similar users
- Hybrid approaches

Collaborative Filtering

- Widely-used recommendation approaches:
 - *k*-nearest neighbor methods
 - Matrix factorization based methods
- Predict the utility of items for a user based on the items previously rated by other like-minded users

- There could be a number of latent factors that affect the recommendation
 - Style of movie: serious vs. funny vs. escapist
 - Demographic: is it preferred more by men or women
- View CF as a matrix factorization problem

• Express a matrix $M \in \mathbb{R}^{m \times n}$ approximately as a product of factors $A \in \mathbb{R}^{m \times p}$ and $B \in \mathbb{R}^{p \times n}$

$$M \sim A \cdot B$$

- Approximate the user × items matrix as a product of matrices in this way
 - Similar to SVD decompositions that we saw earlier (SVD can't be used for a matrix with missing entries)
 - Think of the entries of *M* as corresponding to an inner product of latent factors

Matrix Factorization

-1

.7

.3

Matrix Factorization

-.7

-1

2.1

.7

-2

.3

10

Matrix Factorization

11

 \sim

-.7

-1

2.1

.7

-2

.3

$$\min_{A,B} \sum_{(u,i) \text{ observed}} \left(M_{u,i} - \langle A_{u,:}, B_{:,i} \rangle \right)^2 + \lambda(\|A\|_F^2 + \|B\|_F^2)$$

$$\min_{A,B} \sum_{(u,i) \text{ observed}} \left(M_{u,i} - \langle A_{u,:}, B_{:,i} \rangle \right)^2 + \lambda(\|A\|_F^2 + \|B\|_F^2)$$

Computes the error in the approximation of the observed matrix entries

$$\min_{A,B} \sum_{(u,i) \text{ observed}} \left(M_{u,i} - \langle A_{u,:}, B_{:,i} \rangle \right)^2 + \chi(\|A\|_F^2 + \|B\|_F^2)$$

Regularization preferences matrices with small Frobenius norm

$$\min_{A,B} \sum_{(u,i) \text{ observed}} \left(M_{u,i} - \langle A_{u,:}, B_{:,i} \rangle \right)^2 + \lambda(\|A\|_F^2 + \|B\|_F^2)$$

• How to optimize this objective?

$$\min_{A,B} \sum_{(u,i) \text{ observed}} \left(M_{u,i} - \langle A_{u,:}, B_{:,i} \rangle \right)^2 + \lambda(\|A\|_F^2 + \|B\|_F^2)$$

- How to optimize this objective?
 - (Stochastic) gradient descent!

Extensions

- The basic matrix factorization approach doesn't take into account the observation that some people are tougher reviewers than others and that some movies are over-hyped
 - Can correct for this by introducing a bias term for each user and a global bias

$$\min_{A,B,\mu,b} \sum_{(u,i) \text{ observed}} (M_{u,i} - \mu - b_i - b_u - \langle A_{u,:}, B_{:,i} \rangle)^2 \\ + \lambda (\|A\|_F^2 + \|B\|_F^2) + \nu \left(\sum_i b_i^2 + \sum_u b_u^2\right)$$

End of course content...

Supervised Learning

- Regression & classification
- Discriminative methods
 - k-NN
 - Decision trees
 - Perceptron
 - SVMs & kernel methods
 - Logistic regression
 - Neural networks
- Parameter learning
 - Maximum likelihood estimation
 - Expectation maximization

Bayesian Approaches

- Maximum likelihood estimation
- MAP estimation
- Prior/posterior probabilities
- Naive Bayes

Unsupervised Learning

- Clustering
 - *k*-means
 - Spectral clustering
 - Hierarchical clustering
- Expectation maximization
 - Soft clustering
 - Mixtures of Gaussians

Learning Theory

- PAC learning
- VC dimension
- Bias/variance tradeoff
- Chernoff bounds
- Sample complexity

Optimization Methods

- Gradient descent
 - Stochastic gradient descent
 - Subgradient methods
- Coordinate descent
- Lagrange multipliers and duality

Matrix Based Methods

- Dimensionality Reduction
 - PCA
 - Matrix Factorizations

- Bootstrap sampling
- Bagging
- Boosting

Other Learning Topics

Reinforcement learning

Questions about the course content?

For the final...

- You should understand the basic concepts and theory of all of the algorithms and techniques that we have discussed in the course
- There is no need to memorize complicated formulas, etc.
 - For example, if I ask for the sample complexity of a scheme, I will give you the generic formula
- However, you should be able to derive the algorithms and updates
 - E.g., Lagrange multipliers and SVMs, the EM algorithm, etc.

For the final...

- No calculators, books, notes, etc. will be permitted
 - As before, if you need a calculator, you have done something terribly wrong
- The exam will be in roughly the same format
 - Expect true/false questions, short answers, and two-three long answer questions
- Exam will emphasize the new material, but ALL material will be tested
- Take a look at the practice exams!

Monday, 12/11/2023 11:00AM - 1:45PM GR 2.530

- Vincent Ng (NLP)
- Vibhav Gogate (MLNs, Sampling, Graphical Models)
- Sriraam Natarajan (Graphical Models & Reinforcement Learning)
- Sanda Harabagiu (NLP & Health)
- Nicholas Ruozzi (Graphical Models & Approx. Inference)
- Rishabh Iyer (Submodular Optimization)

ML Related Researchers at UTD

- Yu Xiang (Computer Vision/Robotics)
- Yapeng Tian (Audio-visual Scene Understanding)
- Jessica Ouyang (NLP)
- Yunhui Guo (Computer Vision/Transfer Learning)
- Feng Chen (Data mining/Graph mining)
- Xinya Du (NLP)

And More!

Please evaluate the course!

eval.utdallas.edu