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Collaborative Filtering

• Combining information among collaborating entities to make 
recommendations and predictions

• Can be viewed as a supervised learning problem (with some 
caveats)

• Because of its many, many applications, it gets a special 
name
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Examples

• Movie/TV recommendation (Netflix, Hulu, iTunes)

• Product recommendation (Amazon)

• Social recommendation (Facebook) 

• News content recommendation (Yahoo)

• Priority inbox & spam filtering (Google)

• Online dating (OK Cupid)
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Netflix Movie Recommendation

user movie rating

1 14 3

1 200 4

1 315 1

2 15 5

2 136 1

3 235 3

4 79 3
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user movie rating

1 50 ?

1 28 ?

2 94 ?

2 32 ?

3 11 ?

4 99 ?

4 54 ?

Training Data Test Data



Recommender Systems

• Content-based recommendations

• Recommendations based on a user profile (specific interests) 
or previously consumed content

• Collaborative filtering

• Recommendations based on the content preferences of 
similar users

• Hybrid approaches
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Collaborative Filtering

• Widely-used recommendation approaches:

• 𝑘𝑘-nearest neighbor methods

• Matrix factorization based methods

• Predict the utility of items for a user based on the items 
previously rated by other like-minded users
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Matrix Factorization

• There could be a number of latent factors that affect the 
recommendation

• Style of movie:  serious vs. funny vs. escapist

• Demographic:  is it preferred more by men or women

• View CF as a matrix factorization problem
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Matrix Factorization

• Express a matrix 𝑀𝑀 ∈ ℝ𝑚𝑚×𝑛𝑛 approximately as a product of 
factors 𝐴𝐴 ∈ ℝ𝑚𝑚×𝑝𝑝 and 𝐵𝐵 ∈ ℝ𝑝𝑝×𝑛𝑛

𝑀𝑀~𝐴𝐴 ⋅ 𝐵𝐵

• Approximate the user × items matrix as a product of matrices in 
this way

• Similar to SVD decompositions that we saw earlier (SVD can’t 
be used for a matrix with missing entries)

• Think of the entries of 𝑀𝑀 as corresponding to an inner 
product of latent factors
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Matrix Factorization

9 [from slides of Alex Smola]



Matrix Factorization
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Matrix Factorization
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Matrix Factorization

• We can express finding the “closest” matrix as an optimization 
problem

min
𝐴𝐴,𝐵𝐵

�
𝑢𝑢,𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑀𝑀𝑢𝑢,𝑖𝑖 − 𝐴𝐴𝑢𝑢,:,𝐵𝐵:,𝑖𝑖
2 + 𝜆𝜆 𝐴𝐴 𝐹𝐹

2 + 𝐵𝐵 𝐹𝐹
2
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2
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2

• How to optimize this objective?
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• How to optimize this objective?

• (Stochastic) gradient descent!
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Extensions

• The basic matrix factorization approach doesn’t take into account 
the observation that some people are tougher reviewers than 
others and that some movies are over-hyped

• Can correct for this by introducing a bias term for each user 
and a global bias

min
𝐴𝐴,𝐵𝐵,𝜇𝜇,𝑜𝑜

�
𝑢𝑢,𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑀𝑀𝑢𝑢,𝑖𝑖 − 𝜇𝜇 − 𝑏𝑏𝑖𝑖 − 𝑏𝑏𝑢𝑢 − 𝐴𝐴𝑢𝑢,:,𝐵𝐵:,𝑖𝑖
2

+𝜆𝜆 𝐴𝐴 𝐹𝐹
2 + 𝐵𝐵 𝐹𝐹

2 + 𝜈𝜈 �
𝑖𝑖

𝑏𝑏𝑖𝑖2 + �
𝑢𝑢

𝑏𝑏𝑢𝑢2
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End of course content…
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Supervised Learning

• Regression & classification

• Discriminative methods
• k-NN
• Decision trees
• Perceptron
• SVMs & kernel methods
• Logistic regression
• Neural networks

• Parameter learning
• Maximum likelihood estimation
• Expectation maximization



Bayesian Approaches

• Maximum likelihood estimation

• MAP estimation

• Prior/posterior probabilities

• Naive Bayes



Unsupervised Learning

• Clustering

• 𝑘𝑘-means

• Spectral clustering

• Hierarchical clustering

• Expectation maximization

• Soft clustering

• Mixtures of Gaussians



Learning Theory

• PAC learning

• VC dimension

• Bias/variance tradeoff

• Chernoff bounds

• Sample complexity



Optimization Methods

• Gradient descent
• Stochastic gradient descent
• Subgradient methods

• Coordinate descent

• Lagrange multipliers and duality



Matrix Based Methods

• Dimensionality Reduction
• PCA
• Matrix Factorizations



Ensemble Methods

• Bootstrap sampling

• Bagging

• Boosting



Other Learning Topics

• Reinforcement learning



Questions about the course content?



For the final...

• You should understand the basic concepts and theory of all of 
the algorithms and techniques that we have discussed in the 
course

• There is no need to memorize complicated formulas, etc.

• For example, if I ask for the sample complexity of a scheme, I 
will give you the generic formula

• However, you should be able to derive the algorithms and 
updates

• E.g., Lagrange multipliers and SVMs, the EM algorithm, etc.



For the final...

• No calculators, books, notes, etc. will be permitted

• As before, if you need a calculator, you have done something 
terribly wrong

• The exam will be in roughly the same format

• Expect true/false questions, short answers, and two-three 
long answer questions

• Exam will emphasize the new material, but ALL material will be 
tested

• Take a look at the practice exams!



Final Exam

Monday, 12/11/2023

11:00AM - 1:45PM

GR 2.530



ML Related Researchers at UTD

• Vincent Ng (NLP)

• Vibhav Gogate (MLNs, Sampling, Graphical Models)

• Sriraam Natarajan (Graphical Models & Reinforcement Learning)

• Sanda Harabagiu (NLP & Health)

• Nicholas Ruozzi (Graphical Models & Approx. Inference)

• Rishabh Iyer (Submodular Optimization)

…



ML Related Researchers at UTD

• Yu Xiang (Computer Vision/Robotics)

• Yapeng Tian (Audio-visual Scene Understanding )

• Jessica Ouyang (NLP)

• Yunhui Guo (Computer Vision/Transfer Learning)

• Feng Chen (Data mining/Graph mining)

• Xinya Du (NLP)

And More!



Please evaluate the course!

eval.utdallas.edu
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