

Nicholas Ruozzi University of Texas at Dallas

Based on the slides of Vibhav Gogate and David Sontag

- So far, we've been focused only on algorithms for finding the best hypothesis in the hypothesis space
 - How do we know that the learned hypothesis will perform well on the test set?
 - How many samples do we need to make sure that we learn a good hypothesis?
 - In what situations is learning possible?

- If the training data is linearly separable, we saw that perceptron/SVMs will always perfectly classify the training data
 - This does not mean that it will perfectly classify the test data
 - Intuitively, if the true distribution of samples is linearly separable, then seeing more data should help us do better

Problem Complexity

- Complexity of a learning problem depends on
 - Size/expressiveness of the hypothesis space
 - Accuracy to which the true function must be approximated
 - Probability with which the learner must produce a successful hypothesis
 - Manner in which training examples are presented, e.g. randomly or by query to an oracle

Problem Complexity

- Measures of complexity
 - Sample complexity
 - How much data you need in order to (with high probability) learn a good hypothesis
 - Computational complexity
 - Amount of time and space required to accurately solve (with high probability) the learning problem
 - Higher sample complexity means higher computational complexity

PAC Learning

- Probably approximately correct (PAC)
 - The only reasonable expectation of a learner is that with high probability it learns a close approximation to the target concept
 - Specify two small parameters, $\epsilon>0$ and $\delta\in(0,1)$, and require that with probability at least $(1-\delta)$ a system learn a concept with error at most ϵ

Consistent Learners

- Imagine a simple setting
 - The hypothesis space is finite (i.e., |H| = c)
 - The true distribution of the data is $p(\vec{x})$, no noisy labels
 - We learned a perfect classifier on the training set, let's call it $h \in H$
 - A learner is said to be consistent if it always outputs a perfect classifier (assuming that one exists)
 - Want to compute the (expected) error of the classifier

Notions of Error

- Training error of $h \in H$
 - The error on the training data
 - Number of samples incorrectly classified divided by the total number of samples
- True error of $h \in H$
 - The error over all possible future random samples
 - Probability, with respect to the data generating distribution, that h misclassifies a random data point

$$p(h(x) \neq y)$$

- Assume that there exists a hypothesis in H that perfectly classifies all data points and that |H| is finite
- The version space (set of consistent hypotheses) is said to be ϵ exhausted if and only if every consistent hypothesis has true
 error less than ϵ
 - Want enough samples to guarantee that every consistent hypothesis has error at most ϵ
- We'll show that, given enough samples, w.h.p. every hypothesis with true error at least ϵ is not consistent with the data

- Let $(x^{(1)}, y^{(1)}), \dots, (x^{(M)}, y^{(M)})$ be M labelled data points sampled independently according to p
- Let \mathcal{C}_m^h be a random variable that indicates whether or not the m^{th} data point is correctly classified
- The probability that h misclassifies the m^{th} data point is

$$p(C_m^h = 0) = p(\{(x, y)|h(x) \neq y\}) = \epsilon_h$$

- Let $(x^{(1)}, y^{(1)}), ..., (x^{(M)}, y^{(M)})$ be M labelled data points sampled independently according to p
- Let C_m^h be a random variable that indicates whether or not the m^{th} data point is correctly classified
- The probability that h misclassifies the m^{th} data point is

$$p(C_m^h = 0) = \sum_{(x,y)} p(x,y) \, 1_{h(x) \neq y} = \epsilon_h$$

- Let $(x^{(1)}, y^{(1)}), ..., (x^{(M)}, y^{(M)})$ be M labelled data points sampled independently according to p
- Let \mathcal{C}_m^h be a random variable that indicates whether or not the m^{th} data point is correctly classified
- The probability that h misclassifies the m^{th} data point is

$$p(C_m^h = 0) = \sum_{(x,y)} p(x,y) \, 1_{h(x) \neq y} = \epsilon_h$$

Probability that a randomly sampled pair (x,y) is incorrectly classified by h

- Let $(x^{(1)}, y^{(1)}), ..., (x^{(M)}, y^{(M)})$ be M labelled data points sampled independently according to p
- Let \mathcal{C}_m^h be a random variable that indicates whether or not the m^{th} data point is correctly classified
- The probability that h misclassifies the m^{th} data point is

$$p(C_m^h = 0) = \sum_{(x,y)} p(x,y) \, 1_{h(x) \neq y} = \epsilon_h$$

This is the true error of hypothesis h

Probability that all data points classified correctly?

• Probability that a hypothesis $h \in H$ whose true error is at least ϵ correctly classifies the m data points is then

Probability that all data points classified correctly?

$$p(C_1^h = 1, ..., C_M^h = 1) = \prod_{m=1}^M p(C_m^h = 1) = (1 - \epsilon_h)^M$$

• Probability that a hypothesis $h \in H$ whose true error is at least ϵ correctly classifies the m data points is then

Probability that all data points classified correctly?

$$p(C_1^h = 1, ..., C_M^h = 1) = \prod_{m=1}^M p(C_m^h = 1) = (1 - \epsilon_h)^M$$

• Probability that a hypothesis $h \in H$ whose true error is at least ϵ correctly classifies the m data points is then

$$p(C_1^h = 1, ..., C_M^h = 1) \le (1 - \epsilon)^M \le e^{-\epsilon M}$$

for
$$\epsilon \leq 1$$

The Union Bound

- Let $H_{BAD} \subseteq H$ be the set of all hypotheses that have true error at least ϵ
- From before for each $h \in H_{BAD}$,

 $p(h \text{ correctly classifies all } M \text{ data points}) \leq e^{-\epsilon M}$

• So, the probability that some $h \in H_{BAD}$ correctly classifies all of the data points is

$$p\left(\bigvee_{h\in H_{BAD}}\left(C_{1}^{h}=1,\ldots,C_{M}^{h}=1\right)\right)\leq\sum_{h\in H_{BAD}}p\left(C_{1}^{h}=1,\ldots,C_{M}^{h}=1\right)$$

$$\leq\left|H_{BAD}\right|e^{-\epsilon M}$$

$$\leq\left|H\right|e^{-\epsilon M}$$

Haussler, 1988

- What we just proved:
 - **Theorem:** For a finite hypothesis space, H, with M i.i.d. samples, and $0 < \epsilon < 1$, the probability that the version space is not ϵ -exhausted is at most $|H|e^{-\epsilon M}$
- We can turn this into a sample complexity bound

Haussler, 1988

- What we just proved:
 - **Theorem:** For a finite hypothesis space, H, with M i.i.d. samples, and $0 < \epsilon < 1$, the probability that there exists a hypothesis in H that is consistent with the data but has true error larger than ϵ is at most $|H|e^{-\epsilon M}$
- We can turn this into a sample complexity bound

Sample Complexity

- Let δ be an upper bound on the desired probability of not ϵ -exhausting the sample space
 - That is, the probability that the version space is not ϵ exhausted is at most $|H|e^{-\epsilon M} \leq \delta$
- Solving for M yields

$$M \ge -\frac{1}{\epsilon} \ln \frac{\delta}{|H|}$$
$$= \left(\ln |H| + \ln \frac{1}{\delta} \right) / \epsilon$$

Sample Complexity

- Let δ be an upper bound on the desired probability of not ϵ -exhausting the sample space
 - That is, the probability that the version space is not ϵ exhausted is at most $|H|e^{-\epsilon M} \leq \delta$
- Solving for *M* yields

$$M \ge -\frac{1}{\epsilon} \ln \frac{\delta}{|H|}$$
$$= \left(\ln |H| + \ln \frac{1}{\delta} \right) / \epsilon$$

This is sufficient, but not necessary (union bound is quite loose)

Decision Trees

- Suppose that we want to learn an arbitrary Boolean function given n Boolean features
- Hypothesis space consists of all decision trees
 - Size of this space = ?
- How many samples are sufficient?

Decision Trees

- Suppose that we want to learn an arbitrary Boolean function given n Boolean features
- Hypothesis space consists of all decision trees
 - Size of this space = 2^{2^n} = number of Boolean functions on n inputs
- How many samples are sufficient?

$$M \ge \left(\ln 2^{2^n} + \ln \frac{1}{\delta}\right)/\epsilon$$

Generalizations

- How do we handle situations with no perfect classifier?
 - Pick the hypothesis with the lowest error on the training set
- What do we do if the hypothesis space isn't finite?
 - Infinite sample complexity?
 - Coming soon...

Chernoff Bounds

• Chernoff bound: Suppose $Y_1, ..., Y_M$ are i.i.d. random variables taking values in $\{0,1\}$ such that $E_p[Y_i] = y$. For $\epsilon > 0$,

$$p\left(\left|y - \frac{1}{M}\sum_{m} Y_{m}\right| \ge \epsilon\right) \le 2e^{-2M\epsilon^{2}}$$

Chernoff Bounds

• Chernoff bound: Suppose $Y_1, ..., Y_M$ are i.i.d. random variables taking values in $\{0,1\}$ such that $E_p[Y_i] = y$. For $\epsilon > 0$,

$$p\left(\left|y - \frac{1}{M}\sum_{m} Y_{m}\right| \ge \epsilon\right) \le 2e^{-2M\epsilon^{2}}$$

• Applying this to $1 - C_1^h$, ..., $1 - C_M^h$ gives

$$p\left(\left|\epsilon_h - \frac{1}{M}\sum_{m} (1 - C_m^h)\right| \ge \epsilon\right) \le 2e^{-2M\epsilon^2}$$

Chernoff Bounds

• Chernoff bound: Suppose $Y_1, ..., Y_M$ are i.i.d. random variables taking values in $\{0,1\}$ such that $E_p[Y_i] = y$. For $\epsilon > 0$,

$$p\left(\left|y - \frac{1}{M}\sum_{m} Y_{m}\right| \ge \epsilon\right) \le 2e^{-2M\epsilon^{2}}$$

• Applying this to $1 - C_1^h$, ..., $1 - C_M^h$ gives

$$p\left(\epsilon_h - \frac{1}{M}\sum_{m} (1 - C_m^h) \ge \epsilon\right) \le e^{-2M\epsilon^2}$$

This is the training error

PAC Bounds

- **Theorem:** For a finite hypothesis space H finite, M i.i.d. samples, and $0 < \epsilon < 1$, the probability that true error of any of the best classifiers (i.e., lowest training error) is larger than its training error plus ϵ is at most $|H|e^{-2M\epsilon^2}$
 - Sample complexity (for desired $\delta \ge |H|e^{-2M\epsilon^2}$)

$$M \ge \left(\ln|H| + \ln\frac{1}{\delta}\right)/2\epsilon^2$$

PAC Bounds

• If we require that the previous error is bounded above by δ , then with probability $(1 - \delta)$, for all $h \in H$

$$\epsilon_h \le \epsilon_h^{train} + \sqrt{\frac{1}{2M} \left(\ln |H| + \ln \frac{1}{\delta} \right)}$$
"bias"
"variance"

- For small |H|
 - High bias (may not be enough hypotheses to choose from)
 - Low variance

PAC Bounds

• If we require that the previous error is bounded above by δ , then with probability $(1 - \delta)$, for all $h \in H$

$$\epsilon_h \le \epsilon_h^{train} + \sqrt{\frac{1}{2M} \left(\ln |H| + \ln \frac{1}{\delta} \right)}$$
"bias"
"variance"

- For large |H|
 - Low bias (lots of good hypotheses)
 - High variance