

CS 6347

Lecture 10

Sampling Methods

Sampling vs. Variational Methods

Sampling:

- Guaranteed to approach the correct answer in the limit
- Can be quite slow to converge

- Variational methods:
 - Only approximate the true solution
 - Possible to make them quite fast

Sampling: The Basics

$$p(x_1, \dots, x_n) = \frac{1}{Z} \prod_C \psi_C(x_C)$$

- Idea: if we could generate i.i.d. samples from p, we could use them to estimate the partition function, marginals, etc.
- A sample is an instantiation/assignment of a value for each of the random variables

$$x^t = (x_1^t, \dots, x_n^t)$$

Sampling: The Basics

$$p(x_1, \dots, x_n) = \frac{1}{Z} \prod_C \psi_C(x_C)$$

- Given T i.i.d. samples $x^1, ..., x^T$ drawn from the distribution p, we could estimate marginal probabilities
- But how do we generate samples from a distribution?

Sampling: The Basics

- Let's begin with a simple example
 - Suppose we want to sample from a univariate probability distribution, q(y), where $y \in \{1, ..., k\}$
 - Sampling algorithm:
 - Divide the unit interval into k pieces corresponding to the probabilities $q(1),\ldots,q(k)$

$$q(1)$$
 $q(2)$ $q(k-1)$ $q(k)$

- Pick a random number z in [0,1]
- If z is in the j^{th} box, return j

Sampling: Bayesian Networks

- We can use the same idea to sample from (discrete) Bayesian networks
 - Sample the variables one at a time, in topological order
 - Because of the graph structure, we only have to sample from univariate (conditional) distributions!

Sampling: Bayesian Networks

A	P(A)	
0	.3	
1	.7	

В	P(B)	
0	.4	
1	.6	

A	В	С	P(C A,B)	
0	0	0	.1	
0	0	1	.9	
0	1	0	.2	
0	1	1	.8	
1	0	0	0	
1	0	1	1	
1	1	0	.25	
1	1	1	.75	

С	D	P(D C)	
0	0	.3	
0	1	.7	
1	0	.4	
1	1	.6	

random numbers: 0.8663, 0.0253, 0.1714, 0.8309

Monte Carlo Methods

Express the estimation problem as the expectation of a random variable

$$E_p[f(x)] = \sum_{x} f(x) \cdot p(x)$$

• To estimate this expectation, draw samples x^1, \dots, x^T i.i.d. from p and approximate the expectation as

$$\hat{f} = \sum_{t} \frac{f(x^t)}{T}$$

Monte Carlo Methods

• Law of Large Numbers: as $T \to \infty$,

$$\sum_{t} \frac{f(x^t)}{T} \to E_p[f(x)]$$

- \hat{f} is an **unbiased estimator** of $E_p[f(x)]$
- $\operatorname{var}(\hat{f}) = \operatorname{var}\left(\sum_{t} \frac{f(x^{t})}{T}\right) = \frac{\operatorname{var}(f(x))}{T}$
 - More samples means less variance

Sampling from Marginal Distributions

- Suppose that we have a joint distribution p(x, y) and we would like to estimate p(y)
 - Express this as an expectation

$$p(y) = \sum_{x',y'} \delta(y' = y) \cdot p(x',y')$$

We can then use the previous sampling strategy to estimate this expectation

Rejection Sampling

Rejection sampling:

- To estimate p(y), first draw samples from p(x', y') and discard those for which $y^t \neq y$
- This process can fail miserably if p(y) is very small
 - Let z^t be a random variable that indicates whether or not the t^{th} sample from p(x', y') was accepted
 - $E[\sum_{t=1}^T z^t] = T \cdot p(y)$

Importance Sampling

• Introduce a proposal distribution q(x) such that p(x,y) > 0 implies that q(x) > 0

$$p(y) = \sum_{x} p(x, y)$$

$$= \sum_{x} p(x, y) \frac{q(x)}{q(x)}$$

$$= \sum_{x} \frac{p(x, y)}{q(x)} q(x)$$

$$= E_{q} \left[\frac{p(x, y)}{q(x)} \right]$$

Importance Sampling

- Draw samples from q(x)
 - Note that we can never generate a sample that occurs with probability zero
 - Use the samples from q to approximate p(y)

$$p(y) \approx \frac{1}{T} \sum_{t} \frac{p(x^{t}, y)}{q(x^{t})}$$

Sampling: Bayesian Networks

Α	P(A)	
0	.3	
1	.7	

B	P(B)	
0	.4	
1	.6	

Α	В	С	P(C A,B)	
0	0	0	.1	
0	0	1	.9	
0	1	0	.2	
0	1	1	.8	
1	0	0	0	
1	0	1	1	
1	1	0	.25	
1	1	1	.75	

(c)			
\mathcal{L}	С	D	P(D C)
<u> </u>	0	0	.3
(D)	0	1	.7
	1	0	.4
	1	1	.6

Estimate p(D = 1) using q(A, B, C) uniform over A, B, C

Importance Sampling

- The proposal distribution should be close as possible to p(x|y)
 - Often, this requires knowing an analytic form of the distribution p
 - If we had that, we wouldn't need to sample!
 - Picking good proposal distribution is more "art" than science

Sampling from Conditional Distributions

Can we use the same ideas to sample from conditional distributions?

$$p(x|y) = \frac{\sum_{z} p(x, y, z)}{p(y)}$$

- Using sampling to estimate the numerator and denominator can produce very bad estimates
 - For example, if we over estimate the numerator and underestimate the denominator

Normalized Importance Sampling

Rewrite the conditional distribution as

$$p(x|y) = \frac{\sum_{x',z} \delta(x' = x) p(x', y, z)}{\sum_{x',z} p(x', y, z)}$$

- Can use the same proposal distribution to sample from the numerator and the denominator
 - Common random numbers reduce the variance

Beyond Monte Carlo Methods

- All of the methods discussed so far can have serious limitations depending on the quantity being estimated
- Idea: instead of having a single proposal distribution, why not have an adaptive proposal distribution that depends on the previous sample?

q(x|x') where x' is the previous sample and x is the new assignment to be sampled

