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Lecture 11

MCMC Sampling Methods



Beyond Monte Carlo Methods

e All of the methods discussed so far can have serious limitations
depending on the quantity being estimated

» |dea: instead of having a single proposal distribution, why not have

an adaptive proposal distribution that depends on the previous
sample?

q(x|x") where x' is the previous sample and x is the new assignment to
be sampled




Markov Chains
_

* A Markov chain is a sequence of random variables X, ..., X,, € S
such that

p(xn+1|x1» ---»xn) — p(xn+1|xn )

* The setS is called the state space, and p(X,,.1 = b|X,, =a)is
the probability of transitioning from state a to state b at stepn

* As a Bayesian network or a MRF, the joint distribution over the firstn
steps factorizes over a chain




Markov Chains
_

* When the probability of transitioning between two states does not
depend on time, we call it a time homogeneous Markov chain

— Representitby a |S| X |S| transition matrix P

° p(Xn+1 = J|Xn = i)

* P is a stochastic matrix (all rows sum to one)

— Draw it as a directed graph over the state space with an arrow
froma € Stob € S labelled by the probability of transitioning
fromatob




Markov Chains

* Given some initial distribution over states p (x;)
— Represent p(x,) as a length | S| vector, 74
— The probability distribution after n steps is given by
m, = mP"

 Typically interested in the long term (i.e., what is the state of the
system when n is large)

In particular, we are interested in steady-state distributions u such
thatu = uP

— A given chain may or may not converge to a steady state
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Markov Chains

* Theorem: everyirreducible, aperiodic Markov chain converges to a
unique steady state distribution independent of the initial
distribution

— Irreducible: the directed graph of transitions is strongly
connected

— Aperiodic: p(X,, = i| X; = i) > 0forall large enough n

 If the state graph is strongly connected and there is a non-zero

probability of remaining in any state, then the chain is irreducible and
aperiodic




MCMC Sampling

* Markov chain Monte Carlo sampling

— Construct a Markov chain where the stationary distribution is the
one we want to sample from

— Use the Markov chain to generate samples from the distribution
— Use the same Monte Carlo estimation strategy as before

— Will let us sample conditional distributions easily as well!




Gibbs Sampling

e
* Let's consider a MRF with p(x) = %]’[C Ye(xe)

* Choose an initial assignment x

* Fix an ordering of the variables (any order is fine)

* Foreachj € V inorder
— Draw a sample z from p (X;|xy;) using the current x
— Set Xj = Z

* Repeat




Gibbs Sampling

* Giventhatp(x) = %HC Y (xc) we can sample from p(X;|xpy(;))

— First sampling algorithm that actually lets us exploit the graph
structure

— For Bayesian networks, it reduces to p (X |xy(j)) where MB(j)

is j's Markov blanket (j’s parents, children, and its childrens’
parents)




Gibbs Sampling
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(1) Sample from p(x4]lxg = 0,x, = 0,xp = 0)
Using Bayes rule, p(x4lxg = 0,x, = 0) < p(x4)p(xc = 0]x4, xg = 0)
p(x4y =0]xg =0,x, =0) x.3-.1= .03
p(xy =1lxg =0,x, =0) x.7-.01 =.007
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Gibbs Sampling

0 3 0 4 Order:A,B,C,D,A,B,C, D, ...
1 7 ° 1 6
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(1) Sample from p(x4]lxg = 0,x, = 0,xp = 0)
Using Bayes rule, p(x4lxg = 0,x, = 0) < p(x4)p(xc = 0]x4, xg = 0)
p(xy =0]xg =0,x, =0) x.3-.1->.811
p(xy =1lxg =0,x, =0) .7 -.01 - .189
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Gibbs Sampling

0 3 0 4 Order:A,B,C,D,A,B,C, D, ...
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(1) Sample from p(xg|lxy, = 0,x, = 0,xp = 0)
Using Bayes rule, p(xglxs = 0,x, = 0) < p(xg)p(xc = 0]xy, x5 = 0)
p(xg =0|x, =0,x, =0) x.4-.1=.04
p(xg =1lx4 =0,x, =0) x.6-.2 =.12

12




Gibbs Sampling

0 3 0 4 Order:A,B,C,D,A,B,C, D, ...
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(1) Sample from p(xg|lxy, = 0,x, = 0,xp = 0)
Using Bayes rule, p(xglxs = 0,x, = 0) < p(xg)p(xc = 0]xy, x5 = 0)
p(xg =0|x4 =0,x, =0) x.4-.1->.25
p(xg =1lx4 =0,x, =0) x.6-.2 > .75
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Gibbs Sampling
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(1) Sample from p(x;|x4 = 0,x5 = 1,xp = 0)
Using Bayes rule, p(x.|lx4 = 0,x5 = 1,xp = 0) < p(x¢c|xs = 0,x5 = D)p(xp = 0]|xc)
p(xc =0|x, =0,xg =1,xp =0) x.2-.3=.06
p(xc=1lx, =0,xg =1,xp =0) «.8-.4 =.32
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Gibbs Sampling
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(1) Sample from p(x;|x4 = 0,x5 = 1,xp = 0)
Using Bayes rule, p(x.|lx4 = 0,x5 = 1,xp = 0) < p(x¢c|xs = 0,x5 = D)p(xp = 0]|xc)
p(xc=0|x, =0,xg =1,xp =0) x.2-.3 > .158
p(xc=1lx, =0,xg =1,xp =0) x.8-.4 - .842
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Gibbs Sampling

0 3 0 4 Order: A,B,C,D,A,B,C, D, ..
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(1) Sample from p(xp| x, = 1)
p(xp =0|x,=1) = .4
.6

plxp =1lxc=1) =
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Gibbs Sampling

0 3 0 4 Order: A,B,C,D,A,B,C, D, ..
1 7 ° Q 1 6

P(C|A,B)
1 G 0 0 0 0
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(1) Sample from p(xp| x, = 1)
p(xp =0|x,=1) = .4
.6

plxp =1lxc=1) =
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Gibbs Sampling

0 3 0 4 Order: A,B,C,D,A,B,C, D, ..
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(2) Repeat the same process to generate the next sample
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Gibbs Sampling

* Gibbs sampling forms a Markov chain

* The states of the chain are the assignments and the probability of
transitioning from an assignment y to an assignment z (in the order
1,..,n)

P(Z1 |YV\{1})P(ZZ |J’V\{1,2}» 21) .p(Zn |ZV\{n})

 |If there are no zero probability states, then the chain is irreducible
and aperiodic (hence it converges)

* The stationary distribution is p(x)

— Proof?

19




Gibbs Sampling
e

* Recall that it takes time to reach the steady state distribution from an
arbitrary starting distribution

* The mixing time is the number of samples that it takes before the
approximate distribution is close to the steady state distribution

— In practice, this can take 1000s of iterations (or more)

— We typically ignore the samples for a set amount of time called
the burn in phase and then begin producing samples
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Gibbs Sampling

» We can use Gibbs sampling for MRFs as well!

— We don’t need to compute the partition function to use it
(why not?)

— Many “real” MRFs will have lots of zero probability assignments

* If you don’t start with a non-zero assignment, the algorithm
can get stuck (changing a single variable may not allow you to
escape)

* Might not be possible to go between all possible non-zero
assignments by only flipping one variable at a time

21




Metropolis-Hastings Algorithm

 This idea of choosing a transition probability between new

assignments and the current assignments can be generalized beyond
the transition probabilities used in Gibbs sampling

* Pick some transition function g (x'|x) dependent on the current
state x

— Again, we would ideally want the probability of transitioning
between any two non-zero states to be non-negative
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Metropolis-Hastings Algorithm

Choose an initial assignment x
« Sample an assignment z from the proposal distribution q (x’|x)

« Sample r uniformly from [0,1]

e Ifr < min {1 p(z)qmz)}

"p(x)q(z|x)

— Setxtoz
 Else

— Leave x unchanged
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Metropolis-Hastings Algorithm

* Choose aninitial assignment x
« Sample an assignment z from the proposal distribution q (x’|x)

« Sample r uniformly from [0,1]

1 P(Z)Q(xlz)} P@) o nd 29 e like

, q(Z|X) q(X|Z)
p(x)q(z|x)

e Ifr< min{
importance weights

— Setxtoz The acceptance probability is

then a function of the ratio of the
* Else importance of z and the

importance of x
— Leave x unchanged
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Metropolis-Hastings Algorithm

* The Metropolis-Hastings algorithm produces a Markov chain that

converges to p(x) from any initial distribution (assuming that it is
irreducible and aperiodic)

« What are some choices for g (x'|x)?
— Use an importance sampling distribution
— Use a uniform distribution (like a random walk)

* Gibbs sampling is a special case of this algorithm where the
acceptance probability is always equal to one
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