CS 6347

Lecture 11

MCMC Sampling Methods

Beyond Monte Carlo Methods

- All of the methods discussed so far can have serious limitations depending on the quantity being estimated
- Idea: instead of having a single proposal distribution, why not have an adaptive proposal distribution that depends on the previous sample?
$q\left(x \mid x^{\prime}\right)$ where x^{\prime} is the previous sample and x is the new assignment to be sampled

Markov Chains

- A Markov chain is a sequence of random variables $X_{1}, \ldots, X_{n} \in S$ such that

$$
p\left(x_{n+1} \mid x_{1}, \ldots, x_{n}\right)=p\left(x_{n+1} \mid x_{n}\right)
$$

- The set S is called the state space, and $p\left(X_{n+1}=b \mid X_{n}=a\right)$ is the probability of transitioning from state a to state b at step n
- As a Bayesian network or a MRF, the joint distribution over the first n steps factorizes over a chain

Markov Chains

- When the probability of transitioning between two states does not depend on time, we call it a time homogeneous Markov chain
- Represent it by a $|S| \times|S|$ transition matrix P
- $P_{i j}=p\left(X_{n+1}=j \mid X_{n}=i\right)$
- P is a stochastic matrix (all rows sum to one)
- Draw it as a directed graph over the state space with an arrow from $a \in S$ to $b \in S$ labelled by the probability of transitioning from a to b

Markov Chains

- Given some initial distribution over states $p\left(x_{1}\right)$
- Represent $p\left(x_{1}\right)$ as a length $|S|$ vector, π_{1}
- The probability distribution after n steps is given by

$$
\pi_{n}=\pi_{1} P^{n}
$$

- Typically interested in the long term (i.e., what is the state of the system when n is large)
- In particular, we are interested in steady-state distributions μ such that $\mu=\mu P$
- A given chain may or may not converge to a steady state

Markov Chains

- Theorem: every irreducible, aperiodic Markov chain converges to a unique steady state distribution independent of the initial distribution
- Irreducible: the directed graph of transitions is strongly connected
- Aperiodic: $p\left(X_{n}=i \mid X_{1}=i\right)>0$ for all large enough n
- If the state graph is strongly connected and there is a non-zero probability of remaining in any state, then the chain is irreducible and aperiodic

MCMC Sampling

- Markov chain Monte Carlo sampling
- Construct a Markov chain where the stationary distribution is the one we want to sample from
- Use the Markov chain to generate samples from the distribution
- Use the same Monte Carlo estimation strategy as before
- Will let us sample conditional distributions easily as well!

Gibbs Sampling

- Let's consider a MRF with $p(x)=\frac{1}{z} \prod_{C} \psi_{C}\left(x_{C}\right)$
- Choose an initial assignment x
- Fix an ordering of the variables (any order is fine)
- For each $j \in V$ in order
- Draw a sample z from $p\left(X_{j} \mid x_{V \backslash j}\right)$ using the current x
$-\operatorname{Set} x_{j}=z$
- Repeat

Gibbs Sampling

- Given that $p(x)=\frac{1}{Z} \prod_{C} \psi_{C}\left(x_{C}\right)$ we can sample from $p\left(X_{j} \mid x_{N(j)}\right)$
- First sampling algorithm that actually lets us exploit the graph structure
- For Bayesian networks, it reduces to $p\left(X_{j} \mid x_{M B(j)}\right)$ where $M B(j)$ is j 's Markov blanket (j 's parents, children, and its childrens' parents)

Gibbs Sampling

A		$P(A)$	
	0	.3	
	1		

A	B	C	$P(C \mid A, B)$
0	0	0	.1
0	0	1	.9
0	1	0	.2
0	1	1	.8
1	0	0	.01
1	0	1	.99
1	1	0	.25
1	1	1	.75

Order: A, B, C, D, A, B, C, D, ...

A	B	C	D
0	0	0	0

(1) Sample from $p\left(x_{A} \mid x_{B}=0, x_{C}=0, x_{D}=0\right)$

Using Bayes rule, $p\left(x_{A} \mid x_{B}=0, x_{C}=0\right) \propto p\left(x_{A}\right) p\left(x_{C}=0 \mid x_{A}, x_{B}=0\right)$
$p\left(x_{A}=0 \mid x_{B}=0, x_{C}=0\right) \propto .3 \cdot .1=.03$
$p\left(x_{A}=1 \mid x_{B}=0, x_{C}=0\right) \propto .7 \cdot .01=.007$

Gibbs Sampling

A		$P(A)$	
	0	.3	
	1		

A	B	C	$P(C \mid A, B)$
0	0	0	.1
0	0	1	.9
0	1	0	.2
0	1	1	.8
1	0	0	.01
1	0	1	.99
1	1	0	.25
1	1	1	.75

Order: A, B, C, D, A, B, C, D, ...

A	B	C	D
0	0	0	0
0			

(1) Sample from $p\left(x_{A} \mid x_{B}=0, x_{C}=0, x_{D}=0\right)$

Using Bayes rule, $p\left(x_{A} \mid x_{B}=0, x_{C}=0\right) \propto p\left(x_{A}\right) p\left(x_{C}=0 \mid x_{A}, x_{B}=0\right)$
$p\left(x_{A}=0 \mid x_{B}=0, x_{C}=0\right) \propto .3 \cdot .1 \rightarrow .811$
$p\left(x_{A}=1 \mid x_{B}=0, x_{C}=0\right) \propto .7 \cdot .01 \rightarrow .189$

Gibbs Sampling

A		$P(A)$	
	0	.3	
	1	.7	

A	B	C	$P(C \mid A, B)$
0	0	0	.1
0	0	1	.9
0	1	0	.2
0	1	1	.8
1	0	0	.01
1	0	1	.99
1	1	0	.25
1	1	1	.75

Order: A, B, C, D, A, B, C, D, ...

A	B	C	D
0	0	0	0
0			

(1) Sample from $p\left(x_{B} \mid x_{A}=0, x_{C}=0, x_{D}=0\right)$

Using Bayes rule, $p\left(x_{B} \mid x_{A}=0, x_{C}=0\right) \propto p\left(x_{B}\right) p\left(x_{C}=0 \mid x_{A}, x_{B}=0\right)$
$p\left(x_{B}=0 \mid x_{A}=0, x_{C}=0\right) \propto .4 \cdot .1=.04$
$p\left(x_{B}=1 \mid x_{A}=0, x_{C}=0\right) \propto .6 \cdot .2=.12$

Gibbs Sampling

A		$P(A)$	
	0	.3	
	1	.7	

A	B	C	$P(C \mid A, B)$
0	0	0	.1
0	0	1	.9
0	1	0	.2
0	1	1	.8
1	0	0	.01
1	0	1	.99
1	1	0	.25
1	1	1	.75

Order: A, B, C, D, A, B, C, D, ...

A	B	C	D
0	0	0	0
0	1		

(1) Sample from $p\left(x_{B} \mid x_{A}=0, x_{C}=0, x_{D}=0\right)$

Using Bayes rule, $p\left(x_{B} \mid x_{A}=0, x_{C}=0\right) \propto p\left(x_{B}\right) p\left(x_{C}=0 \mid x_{A}, x_{B}=0\right)$
$p\left(x_{B}=0 \mid x_{A}=0, x_{C}=0\right) \propto .4 \cdot .1 \rightarrow .25$
$p\left(x_{B}=1 \mid x_{A}=0, x_{C}=0\right) \propto .6 \cdot .2 \rightarrow .75$

Gibbs Sampling

A		$P(A)$	
	0	.3	
1		.7	

A	B	C	$P(C \mid A, B)$
0	0	0	.1
0	0	1	.9
0	1	0	.2
0	1	1	.8
1	0	0	.01
1	0	1	.99
1	1	0	.25
1	1	1	.75

Order: A, B, C, D, A, B, C, D, ...

A	B	C	D
0	0	0	0
0	1		

(1) Sample from $p\left(x_{C} \mid x_{A}=0, x_{B}=1, x_{D}=0\right)$

Using Bayes rule, $p\left(x_{C} \mid x_{A}=0, x_{B}=1, x_{D}=0\right) \propto p\left(x_{C} \mid x_{A}=0, x_{B}=1\right) p\left(x_{D}=0 \mid x_{C}\right)$
$p\left(x_{C}=0 \mid x_{A}=0, x_{B}=1, x_{D}=0\right) \propto .2 \cdot .3=.06$
$p\left(x_{C}=1 \mid x_{A}=0, x_{B}=1, x_{D}=0\right) \propto .8 \cdot .4=.32$

Gibbs Sampling

A		$P(A)$	
	0	.3	
1		.7	

A	B	C	$P(C \mid A, B)$
0	0	0	.1
0	0	1	.9
0	1	0	.2
0	1	1	.8
1	0	0	.01
1	0	1	.99
1	1	0	.25
1	1	1	.75

Order: A, B, C, D, A, B, C, D, ...

A	B	C	D
0	0	0	0
0	1	1	

(1) Sample from $p\left(x_{C} \mid x_{A}=0, x_{B}=1, x_{D}=0\right)$

Using Bayes rule, $p\left(x_{C} \mid x_{A}=0, x_{B}=1, x_{D}=0\right) \propto p\left(x_{C} \mid x_{A}=0, x_{B}=1\right) p\left(x_{D}=0 \mid x_{C}\right)$
$p\left(x_{C}=0 \mid x_{A}=0, x_{B}=1, x_{D}=0\right) \propto .2 \cdot .3 \rightarrow .158$
$p\left(x_{C}=1 \mid x_{A}=0, x_{B}=1, x_{D}=0\right) \propto .8 \cdot .4 \rightarrow .842$

Gibbs Sampling

A		$P(A)$	
	0	.3	
	1		

A	B	C	$P(C \mid A, B)$
0	0	0	.1
0	0	1	.9
0	1	0	.2
0	1	1	.8
1	0	0	.01
1	0	1	.99
1	1	0	.25
1	1	1	.75

Order: A, B, C, D, A, B, C, D, ...

A	B	C	D
0	0	0	0
0	1	1	

(1) Sample from $p\left(x_{D} \mid x_{C}=1\right)$

$$
\begin{aligned}
& p\left(x_{D}=0 \mid x_{C}=1\right)=.4 \\
& p\left(x_{D}=1 \mid x_{C}=1\right)=.6
\end{aligned}
$$

Gibbs Sampling

A		$P(A)$	
	0	.3	
	1		

A	B	C	$P(C \mid A, B)$
0	0	0	.1
0	0	1	.9
0	1	0	.2
0	1	1	.8
1	0	0	.01
1	0	1	.99
1	1	0	.25
1	1	1	.75

Order: A, B, C, D, A, B, C, D, ...

A	B	C	D
0	0	0	0
0	1	1	0

(1) Sample from $p\left(x_{D} \mid x_{C}=1\right)$

$$
\begin{aligned}
& p\left(x_{D}=0 \mid x_{C}=1\right)=.4 \\
& p\left(x_{D}=1 \mid x_{C}=1\right)=.6
\end{aligned}
$$

Gibbs Sampling

(2) Repeat the same process to generate the next sample

Gibbs Sampling

- Gibbs sampling forms a Markov chain
- The states of the chain are the assignments and the probability of transitioning from an assignment y to an assignment z (in the order $1, \ldots, n$)

$$
p\left(z_{1} \mid y_{V \backslash\{1\}}\right) p\left(z_{2} \mid y_{V \backslash\{1,2\}}, z_{1}\right) \ldots p\left(z_{n} \mid z_{V \backslash\{n\}}\right)
$$

- If there are no zero probability states, then the chain is irreducible and aperiodic (hence it converges)
- The stationary distribution is $p(x)$
- Proof?

Gibbs Sampling

- Recall that it takes time to reach the steady state distribution from an arbitrary starting distribution
- The mixing time is the number of samples that it takes before the approximate distribution is close to the steady state distribution
- In practice, this can take 1000s of iterations (or more)
- We typically ignore the samples for a set amount of time called the burn in phase and then begin producing samples

Gibbs Sampling

- We can use Gibbs sampling for MRFs as well!
- We don't need to compute the partition function to use it (why not?)
- Many "real" MRFs will have lots of zero probability assignments
- If you don't start with a non-zero assignment, the algorithm can get stuck (changing a single variable may not allow you to escape)
- Might not be possible to go between all possible non-zero assignments by only flipping one variable at a time

Metropolis-Hastings Algorithm

- This idea of choosing a transition probability between new assignments and the current assignments can be generalized beyond the transition probabilities used in Gibbs sampling
- Pick some transition function $q\left(x^{\prime} \mid x\right)$ dependent on the current state x
- Again, we would ideally want the probability of transitioning between any two non-zero states to be non-negative

Metropolis-Hastings Algorithm

- Choose an initial assignment x
- Sample an assignment z from the proposal distribution $q\left(x^{\prime} \mid x\right)$
- Sample r uniformly from $[0,1]$
- If $r<\min \left\{1, \frac{p(z) q(x \mid z)}{p(x) q(z \mid x)}\right\}$
- Set x to z
- Else
- Leave x unchanged

Metropolis-Hastings Algorithm

- Choose an initial assignment x
- Sample an assignment z from the proposal distribution $q\left(x^{\prime} \mid x\right)$
- Sample r uniformly from $[0,1]$
- If $r<\min \left\{1, \frac{p(z) q(x \mid z)}{p(x) q(z \mid x)}\right\}$
- Set x to z
- Else
- Leave x unchanged
$\frac{p(z)}{q(Z \mid x)}$ and $\frac{p(x)}{q(x \mid Z)}$ are like importance weights

The acceptance probability is then a function of the ratio of the importance of z and the importance of x

Metropolis-Hastings Algorithm

- The Metropolis-Hastings algorithm produces a Markov chain that converges to $p(x)$ from any initial distribution (assuming that it is irreducible and aperiodic)
- What are some choices for $q\left(x^{\prime} \mid x\right)$?
- Use an importance sampling distribution
- Use a uniform distribution (like a random walk)
- Gibbs sampling is a special case of this algorithm where the acceptance probability is always equal to one

