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Basics of Machine Learning



The Course So Far…

• What we’ve seen:

– How to compactly model/represent joint distributions using 

graphical models

– How to solve basic inference problems

• Exactly:  variable elimination & belief propagation

• Approximately:  LP relaxations, duality, loopy belief 

propagation, mean field, sampling
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Next Goal

• Where we are going:

– Given samples from a joint distribution, we want to estimate the 

graphical model that produced it

– In practice, we typically have no idea what joint distribution 

describes the data

– There might be lots of hidden variables (i.e., data that we can’t or 

didn’t observe)

– We want the “best” model for some notion of “best”
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Machine Learning

• Need a principled approach to solving these types of problems

– How do we determine which model is better than another?

– How do we measure the performance of our model on tasks that 

we care about?

• Many approaches to machine learning rephrase a learning problem 

as that of optimizing some objective that captures the quantities of 

interest
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Spam Filtering

• Given a collection of emails 𝐸1, … , 𝐸𝑛 and labels 𝐿1, … , 𝐿𝑛 ∈
{𝑠𝑝𝑎𝑚, 𝑛𝑜𝑡 𝑠𝑝𝑎𝑚} want to learn a model that detects whether or 

not an email is spam

– How might we evaluate the model that we learn?
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Spam Filtering

• Given a collection of emails 𝐸1, … , 𝐸𝑛 and labels 𝐿1, … , 𝐿𝑛 ∈
{𝑠𝑝𝑎𝑚, 𝑛𝑜𝑡 𝑠𝑝𝑎𝑚} want to learn a model that detects whether or 

not an email is spam

– How might we evaluate the model that we learn?

• This is an example of what is called a supervised learning problem

– We are presented with labelled data, and our goal is to correctly 

predict the labels of unseen data
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Performance Measures

• Classification:  given a set of unseen emails, correctly label them as 

spam/not spam

– Classification error defined to be the number of misclassified 

emails (under the model)

– Two types of error:  training and test

• Training error:  the number of misclassified emails in the 

labelled training set

• Test error:  the number of misclassified emails in the unseen 

set
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Performance Measures

• Other prediction/inference tasks:  choose a loss function that reflects 

the task you want to solve

• Density estimation:  estimate the full joint distribution

– Error could be defined using the KL divergence between the 

learned model and the true model

• Structure estimation:  estimate the structure of the joint distribution 

(i.e., what independence properties does it assert)
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Machine Learning Terminology

• Overfitting:  the learned model caters too much to the data on which 

it was trained.  In the worst case, the learned model corresponds 

exactly to the training set and assigns probability zero to all 

unobserved samples

• Generalization:  the model should generalize beyond the training set 

to unseen samples

• Cross-validation:  a method of holding out some of the training data 

in order to limit overfitting and improve generalization

• Regularization:  encode a “soft constraint” that prefers simpler 

models
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Bias Variance Tradeoff

• The true model may not be a member of the family of models that we 
learn

– Even with unlimited data, we will not recover the true solution

– This limitation is known as bias

– We can always choose more complicated models at the expense 
of computation time

• With only a few samples, many models might be a good fit 

– Small changes in the samples may result in significantly different 
models

– This type of limitation is called variance
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The Learning Problem

• Given iid samples 𝑥1, … , 𝑥𝑀 from some probability distribution find 

the graphical model that best represents the samples from some 

family of graphical models

• This could entail

– Structure learning:  if the graph structure is unknown, we would 

need to learn it

– Parameter learning:  learn the parameters of the model (the 

parameters usually control the allowable potential functions)
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Maximum Likelihood Estimation

• Fix a family of parameterized distributions

– Each choice of the parameters produces a different distribution

– Example:  for the s-t cut problem on a graph 𝐺, we could treat the 
weights as parameters

• Given samples 𝑥1, … , 𝑥𝑀 from some unknown distribution and parameters 
𝜃…

– The likelihood of the data is defined to be 𝑙 𝜃 =  𝑚 𝑝(𝑥
𝑚|𝜃)

– Goal:  find the 𝜃 that maximizes the log-likelihood

– Example:  given samples of s-t cuts over a graph 𝐺, find the weights that 
maximize the likelihood of observing these samples

12



Simple MLE

• A biased coin is described by a single parameter 𝑏 which 

corresponds to the probability of seeing heads

• Given the set of samples 𝐻,𝐻,𝐻,𝐻, 𝑇 use MLE to estimate 𝑏

(worked out on the board)
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Bayesian Inference

• MLE assumes that there exists some join distribution 𝑝(𝑥, 𝜃) over 
possible observations and choices of the parameters, but only works 
with the conditional distribution 𝑝(𝑥|𝜃)

– In practice, this is much easier than dealing with the whole joint 
distribution

– In the coin flipping example

• if we are told the bias, we can compute the probability that a 
coin comes up heads

• To compute the joint probability, 𝑝 𝑥 𝜃 𝑝(𝜃) we would need 
to choose a probability distribution over the biases
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Bayesian Inference

• We could also consider the posterior probability distribution of the 

parameters given the evidence

𝑝 𝜃 𝑥 =
𝑝 𝑥 𝜃 𝑝 𝜃

𝑝 𝑥

• Prior captures our previous knowledge about the parameters
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Bayesian Inference

• We could also consider the posterior probability distribution of the 

parameters given the evidence

𝑝 𝜃 𝑥 =
𝑝 𝑥 𝜃 𝑝 𝜃

𝑝 𝑥

• Prior captures our previous knowledge about the parameters
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Bayesian Inference

• We could also consider the posterior probability distribution of the 

parameters given the evidence

𝑝 𝜃 𝑥 =
𝑝 𝑥 𝜃 𝑝 𝜃

𝑝 𝑥

• Prior captures our previous knowledge about the parameters

• Bayesian inference computes the posterior probability distribution 

over 𝜃 given the observed samples

• MAP inference maximizes the posterior probability over 𝜃
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Simple MAP Inference

• A biased coin is described by a single parameter 𝑏 which 

corresponds to the probability of seeing heads

• Given the set of samples 𝐻,𝐻,𝐻,𝐻, 𝑇 use MAP inference to 

estimate 𝑏

• What prior distribution should we pick for 𝑝 𝑏 ?

(worked out on the board)
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Simple MAP Inference

• A biased coin is described by a single parameter 𝑏 which 

corresponds to the probability of seeing heads

• Given the set of samples 𝐻,𝐻,𝐻,𝐻, 𝑇 use MAP inference to 

estimate 𝑏

• What prior distribution should we pick for 𝑝 𝑏 ?

– Uniform on [0,1]

– Beta distribution:  𝑝 𝜃 ∝ 𝜃1 1 − 𝜃 𝛽−1

(worked out on the board)
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Simple MAP Inference

• A biased coin is described by a single parameter 𝑏 which 

corresponds to the probability of seeing heads

• Given the set of samples 𝐻,𝐻,𝐻,𝐻, 𝑇 use MAP inference to 

estimate 𝑏

• What prior distribution should we pick for 𝑝 𝑏 ?

• MAP inference is equivalent to maximum likelihood estimation with a 

uniform prior

– Prior can be viewed as a certain kind of regularization
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