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Lecture 13

Maximum Likelihood Learning



Maximum Likelihood Estimation

 Given samples x1, ..., x™ from some unknown distribution with
parameters 6...

— The log-likelihood of the evidence is defined to be
logl(0) = Z logp(x|0)
m

— Goal: maximize the log-likelihood




MLE for Bayesian Networks

* Given samples x1, ..., x™ from some unknown Bayesian network that
factors over the directed acyclic graph G

— The parameters of a Bayesian model are simply the conditional
probabilities that define the factorization

— Foreachi € G we need to leamn p(x;|x,qrents(i)), Create a

variable Hxi |xparents(i)
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MLE for Bayesian Networks

logl(0) = 2 2 log Hx{"lxgzrents(i)
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MLE for Bayesian Networks

[
logl(0) = z z log Hx{"lxgzrents(i)
m eV
— 2 2 log ex?”x%rents(i)
IEV m

- Z Z Z l\Ixi»xparents(i)log Hxi|xparents(i)

LEV Xparents(i) Xi

XiXparents(i) 19 the number of times

(X, Xparents(i)) Was observed in the samples




MLE for Bayesian Networks

[
logl(0) = z z log Hx{"lxgzrents(i)
m eV
— 2 2 log ex?”x%rents(i)
IEV m

- Z Z Z l\Ixi»xparents(i)log Hxi|xparents(i)

LEV Xparents(i) Xi

FiIX X grents(i)Solve for %pa forall x;

(on the board)

rents(i)




MLE for Bayesian Networks

XiXparents(i) __  XiXparents(i)

xilx N
il parents(i) Z ’N / . X .
X; XiXparents(i) parents(i)

* Thisis just the empirical conditional probability distribution

— Worked out nicely because of the factorization of the joint
distribution

 Similar to the coin flips result from last time




MLE for MRFs
e ——

e Let’s compute the MLE for MRFs that factor over the graph G as
1
p(x) = %Hc Ye(xc|0)
» The parameters 6 control the allowable potential functions

* Again, suppose we have samples x1, ..., x™ from some unknown
MRF of this form

log1(6) = [zz log t/)c(x’c'”lé?)] — MlogZ (0)
m C




MLE for MRFs
L

e Let’s compute the MLE for MRFs that factor over the graph G as
1
p(x) = —IlcYc(xc|0)

Z(0)
» The parameters 6 control the allowable potential functions

* Again, suppose we have samples x1, ..., x™ from some unknown
MRF of this form

log 1(8) = [ZZ log ¢c<x’c"|e>] —
m C

Z(0) couples all of the potential functions together!

Even computing Z(0) by itself was a challenging task...
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Conditional Random Fields
_

* Learning MRFs is quite restrictive
— Most “real” problems are really conditional models
 Example: image segmentation

— Represent a segmentation problem as a MRF over a two
dimensional grid

— Each x; is an binary variable indicating whether or not the pixel is
in the foreground or the background

— How do we incorporate pixel information?

* The potentials over the edge (i, j) of the MRF should depend
on x;, x; as well as the pixel information at nodes i and j

UT D
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Feature Vectors
_

» The pixel information is called a feature of the model

— Features will consist of more than just a scalar value (i.e., pixels, at the
very least, are vectors of RGBA values)

 Vector of features y (e.g., one vector of features y; foreachi € V)

— We think of the joint probability distribution as a conditional
distribution p(x|y, 0)

e This makes MLE even harder
— Samples are pairs (x1,y1), ..., (x™,y™)
— The feature vectors can be different for each sample: need to compute

Z(8,y™) inthe log-likelihood!
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Log-Linear Models
e

* MLE seems daunting for MRFs and CRFs

— Need a nice way to parameterize the model and to deal with
features

» We often assume that the models are log-linear in the parameters

— Many of the models that we have seen so far can easily be
expressed as log-linear models of the parameters

— Example: represent the s-t cut problem as a log-linear model (on
the board)
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Log-Linear Models

* Feature vectors should also be incorporated in a log-linear way

— There is no fixed way to do this: itis up to you to decide how best
to incorporate your feature information into the model

* The potential on the clique C should be a log-linear function of the
parameters

Yelxcly, 0) = exp((0, fc(xc, ¥)))

* Here, f is a feature map that takes a collection of feature vectors and
returns a vector

— What might be a good feature map forimage segmentation?
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MLE for Log-Linear Models

1
Z(6,y)

p(ly,6) = 7| | exp(®, feCec, 1))
C

logl(8) = z [Z(H,fc(x’c”,ym»] —logZ(6,y™)
m C

= <Hz Z fe(x, ym)> — Z logZ(6,y™)
m C m
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MLE for Log-Linear Models

1
Z(6,y)

p(ly,6) = 7| | exp(®, feCec, 1))
C

logl(8) = z [Z(H,fc(x’c”,ym»] —logZ(6,y™)
m C

= <Hz Z fe(x, ym)> — Z logZ(6,y™)
m C m

J
Y Y

/)

Linear in 6 Depends non-linearly
on 6
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Concavity of MLE

We will show that log Z (0, y) is a convex function of 6...

Fix a distribution g (x|y)

D(qllp) = z q(x|y)log pC(I)(CT;’;)
= Z q(x|y) log q(x|y) — z q(x|y)logp(x|y, 6)
= —H(q) — z q(x|y) logp(x|y,0)
= —H(q) +logZ(6,y) — 2 z q(x|y)8, fe e, y))
X C

= —H(q) +logZ(8,y) — Z z qc(xcly)O, fe (xe, ¥))
C xc
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Concavity of MLE

logZ(6,y) = max
q

H(q) + 2 2 (Ic(xcb’)(@;fc(xc»y»]
C Xc

\ J
Y

Linearin @

 Ifafunction g(x,y) is convexin x for each y, then max g(x, y) is
y

convexin y

— Asaresult, log Z(6, y) is a convex function of 6
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MLE for Log-Linear Models

1
Z(6,y)

p(xly,0) =

logl(0) = z

m

= <Hz Z fe(x, ym)> — Z logZ(6,y™)
m C m

\ ) \ y
\ Y

1_[ exp({0, fc(xc, ¥)))
C

Zw,fc (x¢", ym)>] —logZ(6,y™)
C

Linear in @ Convexin @
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MLE for Log-Linear Models

—
1
p(xly,0) = 7o | | e, felee, 1))
’ C
logl(0) = z Zw,fc(x’g%ym»] —logZ(6,y™)
m C
= <9, z z fe(xch, y’")> - z logZ(6,y™)
m C m

Y
Concave in 6

Could optimize it using gradient ascent!
(need to compute Vglog Z(6,y))
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MLE via Gradient Ascent

e Whatis the gradient of the log-likelihood with respect to 67?

Vg logl(8) =7

(worked out on board)
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MLE via Gradient Ascent

e Whatis the gradient of the log-likelihood with respect to 6?

7ologl(6) = ) > pc(rcly, 0)fc(xc,y)
C Xxc

— This is the expected value of the feature maps under the joint
distribution

— To compute/approximate this quantity, we only need to
compute/approximate the marginal distributions p-(x.|y, 8)

— This requires performing marginal inference on a different model
at each step of gradient ascent!

UT D
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