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Lecture 13

Maximum Likelihood Learning



Maximum Likelihood Estimation

• Given samples 𝑥1, … , 𝑥𝑀 from some unknown distribution with 

parameters 𝜃…

– The log-likelihood of the evidence is defined to be 

log 𝑙 𝜃 = 

𝑚

log 𝑝(𝑥|𝜃)

– Goal:  maximize the log-likelihood
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MLE for Bayesian Networks

• Given samples 𝑥1, … , 𝑥𝑀 from some unknown Bayesian network that 

factors over the directed acyclic graph 𝐺

– The parameters of a Bayesian model are simply the conditional 

probabilities that define the factorization

– For each 𝑖 ∈ 𝐺 we need to learn 𝑝(𝑥𝑖|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑖 ), create a 

variable 𝜃𝑥𝑖|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑖)

log 𝑙 𝜃 = 

𝑚

 

𝑖∈𝑉

log 𝜃𝑥𝑖
𝑚|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑖)
𝑚
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MLE for Bayesian Networks

log 𝑙 𝜃 = 

𝑚

 

𝑖∈𝑉

log 𝜃𝑥𝑖
𝑚|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑖)
𝑚

= 

𝑖∈𝑉

 

𝑚

log 𝜃𝑥𝑖
𝑚|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑖)
𝑚

= 

𝑖∈𝑉

 

𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑖

 

𝑥𝑖

N𝑥i,𝑥parents(i)log 𝜃𝑥𝑖|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑖
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MLE for Bayesian Networks

log 𝑙 𝜃 = 

𝑚

 

𝑖∈𝑉

log 𝜃𝑥𝑖
𝑚|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑖)
𝑚

= 

𝑖∈𝑉

 

𝑚

log 𝜃𝑥𝑖
𝑚|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑖)
𝑚

= 

𝑖∈𝑉

 

𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑖

 

𝑥𝑖

N𝑥i,𝑥parents(i)log 𝜃𝑥𝑖|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑖
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𝑁𝑥𝑖,𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑖 is the number of times 

(𝑥𝑖 , 𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑖 ) was observed in the samples



MLE for Bayesian Networks

log 𝑙 𝜃 = 

𝑚

 

𝑖∈𝑉

log 𝜃𝑥𝑖
𝑚|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑖)
𝑚

= 

𝑖∈𝑉

 

𝑚

log 𝜃𝑥𝑖
𝑚|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑖)
𝑚

= 

𝑖∈𝑉

 

𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑖

 

𝑥𝑖

N𝑥i,𝑥parents(i)log 𝜃𝑥𝑖|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑖

Fix 𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑖 solve for 𝜃𝑥𝑖|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑖 for all 𝑥𝑖

(on the board)
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MLE for Bayesian Networks

𝜃𝑥𝑖|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑖 =
N𝑥𝑖,𝑥parents 𝑖
 
𝑥𝑖
′N𝑥𝑖
′,𝑥parents 𝑖

=
N𝑥𝑖,𝑥parents 𝑖
N𝑥parents 𝑖

• This is just the empirical conditional probability distribution

– Worked out nicely because of the factorization of the joint 

distribution

• Similar to the coin flips result from last time
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MLE for MRFs

• Let’s compute the MLE for MRFs that factor over the graph 𝐺 as 

𝑝 𝑥 =
1

𝑍(𝜃)
 𝐶𝜓𝐶 𝑥𝐶|𝜃

• The parameters 𝜃 control the allowable potential functions

• Again, suppose we have samples 𝑥1, … , 𝑥𝑀 from some unknown 

MRF of this form

log 𝑙 𝜃 =  

𝑚

 

𝐶

log𝜓𝐶 𝑥𝐶
𝑚 𝜃 −𝑀 log 𝑍 (𝜃)

8



MLE for MRFs

• Let’s compute the MLE for MRFs that factor over the graph 𝐺 as 

𝑝 𝑥 =
1

𝑍(𝜃)
 𝐶𝜓𝐶 𝑥𝐶|𝜃

• The parameters 𝜃 control the allowable potential functions

• Again, suppose we have samples 𝑥1, … , 𝑥𝑀 from some unknown 

MRF of this form

log 𝑙 𝜃 =  

𝑚

 

𝐶

log𝜓𝐶 𝑥𝐶
𝑚 𝜃 −𝑀 log 𝑍 (𝜃)

9

𝑍(𝜃) couples all of the potential functions together!

Even computing 𝑍(𝜃) by itself was a challenging task…



Conditional Random Fields

• Learning MRFs is quite restrictive

– Most “real” problems are really conditional models

• Example:  image segmentation

– Represent a segmentation problem as a MRF over a two 
dimensional grid

– Each 𝑥𝑖 is an binary variable indicating whether or not the pixel is 
in the foreground or the background

– How do we incorporate pixel information?

• The potentials over the edge (𝑖, 𝑗) of the MRF should depend 
on 𝑥𝑖 , 𝑥𝑗 as well as the pixel information at nodes 𝑖 and 𝑗
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Feature Vectors

• The pixel information is called a feature of the model

– Features will consist of more than just a scalar value (i.e., pixels, at the 
very least, are vectors of RGBA values)

• Vector of features 𝑦 (e.g., one vector of features 𝑦𝑖 for each 𝑖 ∈ 𝑉)

– We think of the joint probability distribution as a conditional 
distribution 𝑝(𝑥|𝑦, 𝜃)

• This makes MLE even harder

– Samples are pairs (𝑥1, 𝑦1), … , (𝑥𝑀, 𝑦𝑀)

– The feature vectors can be different for each sample: need to compute 
𝑍(𝜃, 𝑦𝑚) in the log-likelihood!
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Log-Linear Models

• MLE seems daunting for MRFs and CRFs

– Need a nice way to parameterize the model and to deal with 

features

• We often assume that the models are log-linear in the parameters

– Many of the models that we have seen so far can easily be 

expressed as log-linear models of the parameters

– Example:  represent the s-t cut problem as a log-linear model (on 

the board)
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Log-Linear Models

• Feature vectors should also be incorporated in a log-linear way

– There is no fixed way to do this:  it is up to you to decide how best 

to incorporate your feature information into the model

• The potential on the clique 𝐶 should be a log-linear function of the 

parameters

𝜓𝐶 𝑥𝐶|𝑦, 𝜃 = exp 𝜃, 𝑓𝐶 𝑥𝐶 , 𝑦

• Here, 𝑓 is a feature map that takes a collection of feature vectors and 

returns a vector 

– What might be a good feature map for image segmentation?
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MLE for Log-Linear Models

𝑝 𝑥 𝑦, 𝜃 =
1

𝑍 𝜃, 𝑦
 

𝐶

exp 𝜃, 𝑓𝐶 𝑥𝐶 , 𝑦

log 𝑙 𝜃 = 

𝑚

 

𝐶

𝜃, 𝑓𝐶 𝑥𝐶
𝑚, 𝑦𝑚 − log 𝑍(𝜃, 𝑦𝑚)

= 𝜃, 

𝑚

 

𝐶

𝑓𝐶 𝑥𝐶
𝑚, 𝑦𝑚 − 

𝑚

log 𝑍(𝜃, 𝑦𝑚)
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MLE for Log-Linear Models

𝑝 𝑥 𝑦, 𝜃 =
1

𝑍 𝜃, 𝑦
 

𝐶

exp 𝜃, 𝑓𝐶 𝑥𝐶 , 𝑦

log 𝑙 𝜃 = 

𝑚

 

𝐶

𝜃, 𝑓𝐶 𝑥𝐶
𝑚, 𝑦𝑚 − log 𝑍(𝜃, 𝑦𝑚)

= 𝜃, 

𝑚

 

𝐶

𝑓𝐶 𝑥𝐶
𝑚, 𝑦𝑚 − 

𝑚

log 𝑍(𝜃, 𝑦𝑚)
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Linear in 𝜃 Depends non-linearly 
on 𝜃



Concavity of MLE

We will show that log 𝑍(𝜃, 𝑦) is a convex function of 𝜃…

Fix a distribution 𝑞(x|y)

𝐷(𝑞| 𝑝 = 

𝑥

𝑞 𝑥|𝑦 log
𝑞 𝑥|𝑦

𝑝 𝑥|𝑦, 𝜃

= 

𝑥

𝑞 𝑥|𝑦 log 𝑞(𝑥|𝑦) − 

𝑥

𝑞 𝑥|𝑦 log 𝑝 𝑥|𝑦, 𝜃

= −𝐻(𝑞) − 

𝑥

𝑞 𝑥|𝑦 log 𝑝 𝑥|𝑦, 𝜃

= −𝐻(𝑞) + log𝑍(𝜃, 𝑦) − 

𝑥

 

𝐶

𝑞 𝑥|𝑦 𝜃, 𝑓𝐶 𝑥𝐶 , 𝑦

= −𝐻(𝑞) + log𝑍(𝜃, 𝑦) − 

𝐶

 

𝑥𝐶

𝑞𝐶 𝑥𝐶|𝑦 𝜃, 𝑓𝐶 𝑥𝐶 , 𝑦
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Concavity of MLE

log 𝑍(𝜃, 𝑦) = max
𝑞
𝐻(𝑞) + 

𝐶

 

𝑥𝐶

𝑞𝐶 𝑥𝐶|𝑦 𝜃, 𝑓𝐶 𝑥𝐶 , 𝑦

• If a function 𝑔(𝑥, 𝑦) is convex in 𝑥 for each 𝑦, then max
𝑦
𝑔(𝑥, 𝑦) is 

convex in 𝑦

– As a result, log 𝑍(𝜃, 𝑦) is a convex function of 𝜃
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Linear in 𝜃



MLE for Log-Linear Models

𝑝 𝑥 𝑦, 𝜃 =
1

𝑍 𝜃, 𝑦
 

𝐶

exp 𝜃, 𝑓𝐶 𝑥𝐶 , 𝑦

log 𝑙 𝜃 = 

𝑚

 

𝐶

𝜃, 𝑓𝐶 𝑥𝐶
𝑚, 𝑦𝑚 − log 𝑍(𝜃, 𝑦𝑚)

= 𝜃, 

𝑚

 

𝐶

𝑓𝐶 𝑥𝐶
𝑚, 𝑦𝑚 − 

𝑚

log 𝑍(𝜃, 𝑦𝑚)
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Linear in 𝜃 Convex in 𝜃



MLE for Log-Linear Models

𝑝 𝑥 𝑦, 𝜃 =
1

𝑍 𝜃, 𝑦
 

𝐶

exp 𝜃, 𝑓𝐶 𝑥𝐶 , 𝑦

log 𝑙 𝜃 = 

𝑚

 

𝐶

𝜃, 𝑓𝐶 𝑥𝐶
𝑚, 𝑦𝑚 − log 𝑍(𝜃, 𝑦𝑚)

= 𝜃, 

𝑚

 

𝐶

𝑓𝐶 𝑥𝐶
𝑚, 𝑦𝑚 − 

𝑚

log 𝑍(𝜃, 𝑦𝑚)
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Concave in 𝜃

Could optimize it using gradient ascent!
(need to compute 𝛻𝜃log 𝑍(𝜃, 𝑦))



MLE via Gradient Ascent

• What is the gradient of the log-likelihood with respect to 𝜃?

𝛻𝜃 log 𝑙(𝜃) = ?

(worked out on board)
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MLE via Gradient Ascent

• What is the gradient of the log-likelihood with respect to 𝜃?

𝛻𝜃 log 𝑙(𝜃) = 

𝐶

 

𝑥𝐶

𝑝𝐶 𝑥𝐶 𝑦, 𝜃 𝑓𝐶(𝑥𝐶 , 𝑦)

– This is the expected value of the feature maps under the joint 
distribution

– To compute/approximate this quantity, we only need to 
compute/approximate the marginal distributions 𝑝𝐶(𝑥𝐶|𝑦, 𝜃)

– This requires performing marginal inference on a different model 
at each step of gradient ascent!
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