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Lecture 14

More Maximum Likelihood



Maximum Likelihood Estimation

• Given samples 𝑥𝑥1, … , 𝑥𝑥𝑀𝑀 from some unknown distribution with 
parameters 𝜃𝜃…

– The log-likelihood of the evidence is defined to be 

log 𝑙𝑙 𝜃𝜃 = �
𝑚𝑚

log 𝑝𝑝(𝑥𝑥|𝜃𝜃)

– Goal:  maximize the log-likelihood
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MLE for MRFs

• Let’s compute the MLE for MRFs that factor over the graph 𝐺𝐺 as 
𝑝𝑝 𝑥𝑥 = 1

𝑍𝑍(𝜃𝜃)
∏𝐶𝐶 𝜓𝜓𝐶𝐶 𝑥𝑥𝐶𝐶|𝜃𝜃

• The parameters 𝜃𝜃 control the allowable potential functions

• Again, suppose we have samples 𝑥𝑥1, … , 𝑥𝑥𝑀𝑀 from some unknown 
MRF of this form

log 𝑙𝑙 𝜃𝜃 = �
𝑚𝑚

�
𝐶𝐶

log𝜓𝜓𝐶𝐶 𝑥𝑥𝐶𝐶𝑚𝑚 𝜃𝜃 −𝑀𝑀 log 𝑍𝑍 (𝜃𝜃)
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Log-Linear Models

• Feature vectors should also be incorporated in a log-linear way

• The potential on the clique 𝐶𝐶 should be a log-linear function of the 
parameters

𝜓𝜓𝐶𝐶 𝑥𝑥𝐶𝐶|𝑦𝑦, 𝜃𝜃 = exp 𝜃𝜃, 𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶, 𝑦𝑦
where

𝜃𝜃, 𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶, 𝑦𝑦 = �
𝑘𝑘

𝜃𝜃𝑘𝑘 ⋅ 𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶, 𝑦𝑦 𝑘𝑘

• Here, 𝑓𝑓 is a feature map that takes a collection of feature vectors and 
returns a vector the same size as 𝜃𝜃
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Log-Linear MRFs
• Over complete representation:  one parameter for each clique 𝐶𝐶 and choice 

of 𝑥𝑥𝐶𝐶

𝑝𝑝 𝑥𝑥|𝜃𝜃 =
1
𝑍𝑍�

𝐶𝐶

exp(𝜃𝜃𝐶𝐶(𝑥𝑥𝐶𝐶))

– 𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶 is a 0-1 vector that is indexed by 𝐶𝐶 and 𝑥𝑥𝐶𝐶whose only non-zero 
component corresponds to 𝜃𝜃𝐶𝐶(𝑥𝑥𝐶𝐶)

• One parameter per clique

𝑝𝑝 𝑥𝑥|𝜃𝜃 =
1
𝑍𝑍�

𝐶𝐶

exp(𝜃𝜃𝐶𝐶𝑓𝑓𝐶𝐶(𝑥𝑥𝐶𝐶))

– 𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶 is a vector that is indexed ONLY by 𝐶𝐶 whose only non-zero 
component corresponds to 𝜃𝜃𝐶𝐶
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MLE for Log-Linear Models

𝑝𝑝 𝑥𝑥 𝑦𝑦, 𝜃𝜃 =
1

𝑍𝑍 𝜃𝜃, 𝑦𝑦
�
𝐶𝐶

exp 𝜃𝜃, 𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶, 𝑦𝑦

log 𝑙𝑙 𝜃𝜃 = �
𝑚𝑚

�
𝐶𝐶

𝜃𝜃, 𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶𝑚𝑚, 𝑦𝑦𝑚𝑚 − log 𝑍𝑍(𝜃𝜃, 𝑦𝑦𝑚𝑚)

= 𝜃𝜃,�
𝑚𝑚

�
𝐶𝐶

𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶𝑚𝑚, 𝑦𝑦𝑚𝑚 −�
𝑚𝑚

log 𝑍𝑍(𝜃𝜃, 𝑦𝑦𝑚𝑚)
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MLE for Log-Linear Models

𝑝𝑝 𝑥𝑥 𝑦𝑦, 𝜃𝜃 =
1

𝑍𝑍 𝜃𝜃, 𝑦𝑦
�
𝐶𝐶

exp 𝜃𝜃, 𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶, 𝑦𝑦

log 𝑙𝑙 𝜃𝜃 = �
𝑚𝑚

�
𝐶𝐶

𝜃𝜃, 𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶𝑚𝑚, 𝑦𝑦𝑚𝑚 − log 𝑍𝑍(𝜃𝜃, 𝑦𝑦𝑚𝑚)

= 𝜃𝜃,�
𝑚𝑚

�
𝐶𝐶

𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶𝑚𝑚, 𝑦𝑦𝑚𝑚 −�
𝑚𝑚

log 𝑍𝑍(𝜃𝜃, 𝑦𝑦𝑚𝑚)

Linear in 𝜃𝜃 Depends non-linearly 
on 𝜃𝜃
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Concavity of MLE
We will show that log 𝑍𝑍(𝜃𝜃, 𝑦𝑦) is a convex function of 𝜃𝜃…

Fix a distribution 𝑞𝑞(x|y)

𝐷𝐷(𝑞𝑞| 𝑝𝑝 = �
𝑥𝑥

𝑞𝑞 𝑥𝑥|𝑦𝑦 log
𝑞𝑞 𝑥𝑥|𝑦𝑦
𝑝𝑝 𝑥𝑥|𝑦𝑦, 𝜃𝜃

= �
𝑥𝑥

𝑞𝑞 𝑥𝑥|𝑦𝑦 log 𝑞𝑞(𝑥𝑥|𝑦𝑦) −�
𝑥𝑥

𝑞𝑞 𝑥𝑥|𝑦𝑦 log 𝑝𝑝 𝑥𝑥|𝑦𝑦, 𝜃𝜃

= −𝐻𝐻(𝑞𝑞) −�
𝑥𝑥

𝑞𝑞 𝑥𝑥|𝑦𝑦 log 𝑝𝑝 𝑥𝑥|𝑦𝑦, 𝜃𝜃

= −𝐻𝐻(𝑞𝑞) + log𝑍𝑍(𝜃𝜃, 𝑦𝑦) −�
𝑥𝑥

�
𝐶𝐶

𝑞𝑞 𝑥𝑥|𝑦𝑦 𝜃𝜃, 𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶, 𝑦𝑦

= −𝐻𝐻(𝑞𝑞) + log𝑍𝑍(𝜃𝜃, 𝑦𝑦) −�
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝑞𝑞𝐶𝐶 𝑥𝑥𝐶𝐶|𝑦𝑦 𝜃𝜃, 𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶, 𝑦𝑦
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Concavity of MLE

log 𝑍𝑍(𝜃𝜃, 𝑦𝑦) = max
𝑞𝑞

𝐻𝐻(𝑞𝑞) + �
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝑞𝑞𝐶𝐶 𝑥𝑥𝐶𝐶|𝑦𝑦 𝜃𝜃, 𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶, 𝑦𝑦

• If a function 𝑔𝑔(𝑥𝑥, 𝑦𝑦) is convex in 𝑥𝑥 for each 𝑦𝑦, then max
𝑦𝑦

𝑔𝑔(𝑥𝑥, 𝑦𝑦) is 

convex in 𝑦𝑦

– As a result, log 𝑍𝑍(𝜃𝜃, 𝑦𝑦) is a convex function of 𝜃𝜃

Linear in 𝜃𝜃
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MLE for Log-Linear Models

𝑝𝑝 𝑥𝑥 𝑦𝑦, 𝜃𝜃 =
1

𝑍𝑍 𝜃𝜃, 𝑦𝑦
�
𝐶𝐶

exp 𝜃𝜃, 𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶, 𝑦𝑦

log 𝑙𝑙 𝜃𝜃 = �
𝑚𝑚

�
𝐶𝐶

𝜃𝜃, 𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶𝑚𝑚, 𝑦𝑦𝑚𝑚 − log 𝑍𝑍(𝜃𝜃, 𝑦𝑦𝑚𝑚)

= 𝜃𝜃,�
𝑚𝑚

�
𝐶𝐶

𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶𝑚𝑚, 𝑦𝑦𝑚𝑚 −�
𝑚𝑚

log 𝑍𝑍(𝜃𝜃, 𝑦𝑦𝑚𝑚)

Linear in 𝜃𝜃 Convex in 𝜃𝜃
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MLE for Log-Linear Models

𝑝𝑝 𝑥𝑥 𝑦𝑦, 𝜃𝜃 =
1

𝑍𝑍 𝜃𝜃, 𝑦𝑦
�
𝐶𝐶

exp 𝜃𝜃, 𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶, 𝑦𝑦

log 𝑙𝑙 𝜃𝜃 = �
𝑚𝑚

�
𝐶𝐶

𝜃𝜃, 𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶𝑚𝑚, 𝑦𝑦𝑚𝑚 − log 𝑍𝑍(𝜃𝜃, 𝑦𝑦𝑚𝑚)

= 𝜃𝜃,�
𝑚𝑚

�
𝐶𝐶

𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶𝑚𝑚, 𝑦𝑦𝑚𝑚 −�
𝑚𝑚

log 𝑍𝑍(𝜃𝜃, 𝑦𝑦𝑚𝑚)

Concave in 𝜃𝜃

Could optimize it using gradient ascent!
(need to compute 𝛻𝛻𝜃𝜃log𝑍𝑍(𝜃𝜃, 𝑦𝑦))
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MLE via Gradient Ascent

• What is the gradient of the log-likelihood with respect to 𝜃𝜃?

𝛻𝛻𝜃𝜃 log 𝑍𝑍(𝜃𝜃, 𝑦𝑦𝑚𝑚) = ?

(worked out on board)
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MLE via Gradient Ascent

• What is the gradient of the log-likelihood with respect to 𝜃𝜃?

𝛻𝛻𝜃𝜃 log 𝑙𝑙(𝜃𝜃) = �
𝐶𝐶

�
𝑚𝑚

𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶𝑚𝑚, 𝑦𝑦𝑚𝑚 −�
𝑥𝑥𝐶𝐶

𝑝𝑝𝐶𝐶 𝑥𝑥𝐶𝐶|𝑦𝑦𝑚𝑚, 𝜃𝜃 𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶, 𝑦𝑦𝑚𝑚

– This is the expected value of the feature maps under the joint 
distribution

– To compute/approximate this quantity, we only need to 
compute/approximate the marginal distributions 𝑝𝑝𝐶𝐶(𝑥𝑥𝐶𝐶|𝑦𝑦, 𝜃𝜃)

– This requires performing marginal inference on a different model at 
each step of gradient ascent!
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Moment Matching

• Let 𝑓𝑓 𝑥𝑥𝑚𝑚, 𝑦𝑦𝑚𝑚 = ∑𝐶𝐶 𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶𝑚𝑚, 𝑦𝑦𝑚𝑚

• Setting the gradient with respect to 𝜃𝜃 equal to zero and solving gives

�
𝑚𝑚

𝑓𝑓(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑚𝑚) = �
𝑚𝑚

�
𝑥𝑥

𝑝𝑝 𝑥𝑥|𝑦𝑦𝑚𝑚, 𝜃𝜃 𝑓𝑓 𝑥𝑥, 𝑦𝑦𝑚𝑚

• This condition is called moment matching and when the model is an 
MRF instead of a CRF this reduces to

1
𝑀𝑀
�
𝑚𝑚

𝑓𝑓(𝑥𝑥𝑚𝑚) = �
𝑥𝑥

𝑝𝑝 𝑥𝑥|𝜃𝜃 𝑓𝑓 𝑥𝑥
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Moment Matching

• To better understand why this is called moment matching, consider a 
log-linear MRF

𝑝𝑝 𝑥𝑥 =
1
𝑍𝑍
�
𝐶𝐶

exp(𝜃𝜃𝐶𝐶(𝑥𝑥𝐶𝐶))

• That is, 𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶 is a vector that is indexed by 𝐶𝐶 and 𝑥𝑥𝐶𝐶whose only 
non-zero component corresponds to 𝜃𝜃𝐶𝐶(𝑥𝑥𝐶𝐶)

• The moment matching condition becomes

1
𝑀𝑀
�
𝑚𝑚

𝛿𝛿(𝑥𝑥𝐶𝐶 = 𝑥𝑥𝐶𝐶𝑚𝑚) = 𝑝𝑝𝐶𝐶 𝑥𝑥𝐶𝐶 𝜃𝜃 , for all 𝐶𝐶, 𝑥𝑥𝐶𝐶
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Duality and MLE

log 𝑍𝑍(𝜃𝜃, 𝑦𝑦) = max
𝑞𝑞

𝐻𝐻(𝑞𝑞) + �
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝑞𝑞𝐶𝐶 𝑥𝑥𝐶𝐶|𝑦𝑦 𝜃𝜃, 𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶, 𝑦𝑦

log 𝑙𝑙 𝜃𝜃 = 𝜃𝜃,�
𝑚𝑚

�
𝐶𝐶

𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶𝑚𝑚, 𝑦𝑦𝑚𝑚 −�
𝑚𝑚

log𝑍𝑍(𝜃𝜃, 𝑦𝑦𝑚𝑚)

Plugging the first into the second gives:

log 𝑙𝑙 𝜃𝜃 = 𝜃𝜃,�
𝑚𝑚

�
𝐶𝐶

𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶𝑚𝑚, 𝑦𝑦𝑚𝑚 −�
𝑚𝑚

max
𝑞𝑞𝑚𝑚

𝐻𝐻(𝑞𝑞𝑚𝑚) + �
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝑞𝑞𝐶𝐶𝑚𝑚 𝑥𝑥𝐶𝐶|𝑦𝑦𝑚𝑚 𝜃𝜃, 𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶, 𝑦𝑦𝑚𝑚
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Duality and MLE

max
𝜃𝜃

log 𝑙𝑙 𝜃𝜃 = max
𝜃𝜃

min
𝑞𝑞1,…,𝑞𝑞𝑀𝑀

𝜃𝜃,�
𝐶𝐶

�
𝑚𝑚

𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶𝑚𝑚, 𝑦𝑦𝑚𝑚 −�
𝑥𝑥𝐶𝐶

𝑞𝑞𝐶𝐶𝑚𝑚 𝑥𝑥𝐶𝐶|𝑦𝑦𝑚𝑚 𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶, 𝑦𝑦𝑚𝑚 −�
𝑚𝑚

𝐻𝐻(𝑞𝑞𝑚𝑚)

• This is called a minimax or saddle-point problem

• Recall that we ended up with similar looking optimization problems when 
we constructed the Lagrange dual function

• When can we switch the order of the max and min?

– The function is linear in theta, so there is an advantage to swapping 
the order
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Sion’s Minimax Theorem

Let X be a compact convex subset of 𝑅𝑅𝑛𝑛 and 𝑌𝑌 be a convex subset of 𝑅𝑅𝑚𝑚

Let f be a real-valued function on 𝑋𝑋 × 𝑌𝑌 such that 

– 𝑓𝑓(𝑥𝑥,⋅) is a continuous concave function over 𝑌𝑌 for each 𝑥𝑥 ∈ 𝑋𝑋

– 𝑓𝑓(⋅, 𝑦𝑦) is a continuous convex function over 𝑋𝑋 for each 𝑦𝑦 ∈ 𝑌𝑌

then

sup
𝑦𝑦

min
𝑥𝑥
𝑓𝑓(𝑥𝑥, 𝑦𝑦) = min

𝑥𝑥
sup
𝑦𝑦
𝑓𝑓 𝑥𝑥, 𝑦𝑦
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Duality and MLE

max
𝜃𝜃

min
𝑞𝑞1,…,𝑞𝑞𝑀𝑀

𝜃𝜃,�
𝐶𝐶

�
𝑚𝑚

𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶𝑚𝑚, 𝑦𝑦𝑚𝑚 −�
𝑥𝑥𝐶𝐶

𝑞𝑞𝐶𝐶𝑚𝑚 𝑥𝑥𝐶𝐶|𝑦𝑦𝑚𝑚 𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶, 𝑦𝑦𝑚𝑚 −�
𝑚𝑚

𝐻𝐻(𝑞𝑞𝑚𝑚)

is equal to

min
𝑞𝑞1,…,𝑞𝑞𝑀𝑀

max
𝜃𝜃

𝜃𝜃,�
𝐶𝐶

�
𝑚𝑚

𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶𝑚𝑚, 𝑦𝑦𝑚𝑚 −�
𝑥𝑥𝐶𝐶

𝑞𝑞𝐶𝐶𝑚𝑚 𝑥𝑥𝐶𝐶|𝑦𝑦𝑚𝑚 𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶, 𝑦𝑦𝑚𝑚 −�
𝑚𝑚

𝐻𝐻(𝑞𝑞𝑚𝑚)

Solve for 𝜃𝜃?
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Maximum Entropy

max
𝑞𝑞1,…,𝑞𝑞𝑀𝑀

�
𝑚𝑚

𝐻𝐻(𝑞𝑞𝑚𝑚)

such that the moment matching condition is satisfied

�
𝑚𝑚

𝑓𝑓(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑚𝑚) = �
𝑚𝑚

�
𝑥𝑥

𝑞𝑞𝑚𝑚 𝑥𝑥|𝑦𝑦𝑚𝑚 𝑓𝑓 𝑥𝑥, 𝑦𝑦𝑚𝑚

and 𝑞𝑞1, … , 𝑞𝑞𝑚𝑚 are discrete probability distributions

• Instead of maximizing the log-likelihood, we could maximize the 
entropy over all approximating distributions that satisfy the moment 
matching condition
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MLE in Practice

• We can compute the partition function in linear time over trees using 
belief propagation

– We can use this to learn the parameters of tree-structured models

• What if the graph isn’t a tree?

– Use variable elimination to compute the partition function (exact 
but slow)

– Use importance sampling to approximate the partition function 
(can also be quite slow; maybe only use a few samples?)

– Use loopy belief propagation to approximate the partition 
function (can be bad if loopy BP doesn’t converge quickly)
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MLE in Practice

• Practical wisdom:

– If you are trying to perform some prediction task (i.e., MAP inference to 
do prediction), then it is better to learn the “wrong model”

– Learning and prediction should use the same approximations

• What people actually do:

– Use a few iterations of loopy BP or sampling to approximate the 
marginals

– Approximate marginals give approximate gradients (recall that the 
gradient only depended on the marginals)

– Perform approximate gradient descent and hope it works
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MLE in Practice

• Other options

– Replace the true entropy with the Bethe entropy and solve the 
approximate dual problem

– Use fancier optimization techniques to solve the problem faster

• e.g., the method of conditional gradients
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