

CS 6347

Lecture 14

More Maximum Likelihood

Maximum Likelihood Estimation

- Given samples $x^1, ..., x^M$ from some unknown distribution with parameters θ ...
 - The log-likelihood of the evidence is defined to be

$$\log l(\theta) = \sum_{m} \log p(x|\theta)$$

Goal: maximize the log-likelihood

MLE for MRFs

- Let's compute the MLE for MRFs that factor over the graph G as $p(x) = \frac{1}{Z(\theta)} \prod_C \psi_C(x_C | \theta)$
- The parameters θ control the allowable potential functions
- Again, suppose we have samples $x^1, ..., x^M$ from some unknown MRF of this form

$$\log l(\theta) = \left[\sum_{m} \sum_{C} \log \psi_{C}(x_{C}^{m}|\theta)\right] - M \log Z(\theta)$$

Log-Linear Models

- Feature vectors should also be incorporated in a log-linear way
- The potential on the clique C should be a log-linear function of the parameters

$$\psi_C(x_C|y,\theta) = \exp(\langle \theta, f_C(x_C,y) \rangle)$$

where

$$\langle \theta, f_C(x_C, y) \rangle = \sum_k \theta_k \cdot f_C(x_C, y)_k$$

• Here, f is a feature map that takes a collection of feature vectors and returns a vector the same size as θ

Log-Linear MRFs

• Over complete representation: one parameter for each clique ${\cal C}$ and choice of $x_{\cal C}$

$$p(x|\theta) = \frac{1}{Z} \prod_{C} \exp(\theta_{C}(x_{C}))$$

- $f_C(x_C)$ is a 0-1 vector that is indexed by C and x_C whose only non-zero component corresponds to $\theta_C(x_C)$
- One parameter per clique

$$p(x|\theta) = \frac{1}{Z} \prod_{C} \exp(\theta_{C} f_{C}(x_{C}))$$

 $-f_C(x_C)$ is a vector that is indexed ONLY by C whose only non-zero component corresponds to θ_C

MLE for Log-Linear Models

$$p(x|y,\theta) = \frac{1}{Z(\theta,y)} \prod_{C} \exp(\langle \theta, f_{C}(x_{C},y) \rangle)$$

$$\log l(\theta) = \sum_{m} \left[\sum_{C} \langle \theta, f_{C}(x_{C}^{m}, y^{m}) \rangle \right] - \log Z(\theta, y^{m})$$
$$= \left\langle \theta, \sum_{m} \sum_{C} f_{C}(x_{C}^{m}, y^{m}) \right\rangle - \sum_{m} \log Z(\theta, y^{m})$$

MLE for Log-Linear Models

$$p(x|y,\theta) = \frac{1}{Z(\theta,y)} \prod_{C} \exp(\langle \theta, f_{C}(x_{C},y) \rangle)$$

$$\log l(\theta) = \sum_{m} \left[\sum_{C} \langle \theta, f_{C}(x_{C}^{m}, y^{m}) \rangle \right] - \log Z(\theta, y^{m})$$

$$= \left\langle \theta, \sum_{m} \sum_{C} f_{C}(x_{C}^{m}, y^{m}) \right\rangle - \sum_{m} \log Z(\theta, y^{m})$$

Linear in θ

Depends non-linearly on θ

Concavity of MLE

We will show that $\log Z(\theta, y)$ is a convex function of θ ...

Fix a distribution q(x|y)

$$D(q||p) = \sum_{x} q(x|y) \log \frac{q(x|y)}{p(x|y,\theta)}$$

$$= \sum_{x} q(x|y) \log q(x|y) - \sum_{x} q(x|y) \log p(x|y,\theta)$$

$$= -H(q) - \sum_{x} q(x|y) \log p(x|y,\theta)$$

$$= -H(q) + \log Z(\theta,y) - \sum_{x} \sum_{C} q(x|y) \langle \theta, f_{C}(x_{C},y) \rangle$$

$$= -H(q) + \log Z(\theta,y) - \sum_{C} \sum_{x \in C} q_{C}(x_{C}|y) \langle \theta, f_{C}(x_{C},y) \rangle$$

Concavity of MLE

$$\log Z(\theta, y) = \max_{q} \left[H(q) + \sum_{C} \sum_{x_{C}} q_{C}(x_{C}|y) \langle \theta, f_{C}(x_{C}, y) \rangle \right]$$
Linear in θ

- If a function g(x, y) is convex in x for each y, then $\max_{y} g(x, y)$ is convex in y
 - As a result, $\log Z(\theta, y)$ is a convex function of θ

MLE for Log-Linear Models

$$p(x|y,\theta) = \frac{1}{Z(\theta,y)} \prod_{C} \exp(\langle \theta, f_{C}(x_{C},y) \rangle)$$

$$\log l(\theta) = \sum_{m} \left[\sum_{C} \langle \theta, f_{C}(x_{C}^{m}, y^{m}) \rangle \right] - \log Z(\theta, y^{m})$$

$$= \left\langle \theta, \sum_{m} \sum_{C} f_{C}(x_{C}^{m}, y^{m}) \right\rangle - \sum_{m} \log Z(\theta, y^{m})$$

Linear in θ

Convex in θ

MLE for Log-Linear Models

$$p(x|y,\theta) = \frac{1}{Z(\theta,y)} \prod_{C} \exp(\langle \theta, f_{C}(x_{C},y) \rangle)$$

$$\log l(\theta) = \sum_{m} \left[\sum_{C} \langle \theta, f_C(x_C^m, y^m) \rangle \right] - \log Z(\theta, y^m)$$
$$= \left\langle \theta, \sum_{m} \sum_{C} f_C(x_C^m, y^m) \right\rangle - \sum_{m} \log Z(\theta, y^m)$$

Concave in θ

Could optimize it using gradient ascent! (need to compute $\nabla_{\theta} \log Z(\theta, y)$)

MLE via Gradient Ascent

• What is the gradient of the log-likelihood with respect to θ ?

$$\nabla_{\theta} \log Z(\theta, y^m) = ?$$

(worked out on board)

MLE via Gradient Ascent

• What is the gradient of the log-likelihood with respect to θ ?

$$\nabla_{\theta} \log l(\theta) = \sum_{C} \sum_{m} \left(f_{C}(x_{C}^{m}, y^{m}) - \sum_{x_{C}} p_{C}(x_{C} | y^{m}, \theta) f_{C}(x_{C}, y^{m}) \right)$$

- This is the expected value of the feature maps under the joint distribution
- To compute/approximate this quantity, we only need to compute/approximate the marginal distributions $p_C(x_C|y,\theta)$
- This requires performing marginal inference on a different model at each step of gradient ascent!

Moment Matching

- Let $f(x^m, y^m) = \sum_C f_C(x_C^m, y^m)$
- Setting the gradient with respect to θ equal to zero and solving gives

$$\sum_{m} f(x^{m}, y^{m}) = \sum_{m} \sum_{x} p(x|y^{m}, \theta) f(x, y^{m})$$

 This condition is called moment matching and when the model is an MRF instead of a CRF this reduces to

$$\frac{1}{M}\sum_{m} f(x^{m}) = \sum_{x} p(x|\theta)f(x)$$

Moment Matching

 To better understand why this is called moment matching, consider a log-linear MRF

$$p(x) = \frac{1}{Z} \prod_{C} \exp(\theta_{C}(x_{C}))$$

- That is, $f_C(x_C)$ is a vector that is indexed by C and x_C whose only non-zero component corresponds to $\theta_C(x_C)$
- The moment matching condition becomes

$$\frac{1}{M} \sum_{m} \delta(x_C = x_C^m) = p_C(x_C | \theta), \quad \text{for all } C, x_C$$

Duality and MLE

$$\log Z(\theta, y) = \max_{q} \left[H(q) + \sum_{C} \sum_{x_{C}} q_{C}(x_{C}|y) \langle \theta, f_{C}(x_{C}, y) \rangle \right]$$

$$\log l(\theta) = \left\langle \theta, \sum_{m} \sum_{C} f_{C}(x_{C}^{m}, y^{m}) \right\rangle - \sum_{m} \log Z(\theta, y^{m})$$

Plugging the first into the second gives:

$$\log l(\theta) = \left\langle \theta, \sum_{m} \sum_{C} f_{C}(x_{C}^{m}, y^{m}) \right\rangle - \sum_{m} \max_{q^{m}} \left[H(q^{m}) + \sum_{C} \sum_{x_{C}} q_{C}^{m}(x_{C}|y^{m}) \langle \theta, f_{C}(x_{C}, y^{m}) \rangle \right]$$

Duality and MLE

$$\max_{\theta} \log l(\theta) = \max_{\theta} \min_{q^1, \dots, q^M} \left[\left\langle \theta, \sum_{C} \sum_{m} \left(f_C(x_C^m, y^m) - \sum_{x_C} q_C^m(x_C | y^m) f_C(x_C, y^m) \right) \right\rangle - \sum_{m} H(q^m) \right]$$

- This is called a minimax or saddle-point problem
- Recall that we ended up with similar looking optimization problems when we constructed the Lagrange dual function
- When can we switch the order of the max and min?
 - The function is linear in theta, so there is an advantage to swapping the order

Sion's Minimax Theorem

Let X be a compact convex subset of \mathbb{R}^n and Y be a convex subset of \mathbb{R}^m

Let f be a real-valued function on $X \times Y$ such that

- $-f(x,\cdot)$ is a continuous concave function over Y for each $x \in X$
- $-f(\cdot,y)$ is a continuous convex function over X for each $y \in Y$

then

$$\sup_{y} \min_{x} f(x, y) = \min_{x} \sup_{y} f(x, y)$$

Duality and MLE

$$\max_{\theta} \min_{q^{1},...,q^{M}} \left[\left\langle \theta, \sum_{C} \sum_{m} \left(f_{C}(x_{C}^{m}, y^{m}) - \sum_{x_{C}} q_{C}^{m}(x_{C}|y^{m}) f_{C}(x_{C}, y^{m}) \right) \right\rangle - \sum_{m} H(q^{m}) \right]$$

is equal to

$$\min_{q^{1},...,q^{M}} \max_{\theta} \left[\left| \theta, \sum_{C} \sum_{m} \left(f_{C}(x_{C}^{m}, y^{m}) - \sum_{x_{C}} q_{C}^{m}(x_{C}|y^{m}) f_{C}(x_{C}, y^{m}) \right) \right| - \sum_{m} H(q^{m}) \right]$$

Solve for θ ?

Maximum Entropy

$$\max_{q^1,\dots,q^M} \sum_m H(q^m)$$

such that the moment matching condition is satisfied

$$\sum_{m} f(x^m, y^m) = \sum_{m} \sum_{x} q^m(x|y^m) f(x, y^m)$$

and q^1, \dots, q^m are discrete probability distributions

 Instead of maximizing the log-likelihood, we could maximize the entropy over all approximating distributions that satisfy the moment matching condition

MLE in Practice

- We can compute the partition function in linear time over trees using belief propagation
 - We can use this to learn the parameters of tree-structured models
- What if the graph isn't a tree?
 - Use variable elimination to compute the partition function (exact but slow)
 - Use importance sampling to approximate the partition function (can also be quite slow; maybe only use a few samples?)
 - Use loopy belief propagation to approximate the partition function (can be bad if loopy BP doesn't converge quickly)

MLE in Practice

- Practical wisdom:
 - If you are trying to perform some prediction task (i.e., MAP inference to do prediction), then it is better to learn the "wrong model"
 - Learning and prediction should use the same approximations
- What people actually do:
 - Use a few iterations of loopy BP or sampling to approximate the marginals
 - Approximate marginals give approximate gradients (recall that the gradient only depended on the marginals)
 - Perform approximate gradient descent and hope it works

MLE in Practice

- Other options
 - Replace the true entropy with the Bethe entropy and solve the approximate dual problem
 - Use fancier optimization techniques to solve the problem faster
 - e.g., the method of conditional gradients

