
CS 6347

Lecture 15

Concave Entropy Approximations &
Conditional Gradients



Course Project
• Pick a group (1-4) students

• Write a brief proposal and email it to me and Travis

• Do the project

– Collect/find a dataset

– Build a graphical model

– Solve approximately/exactly some inference or learning task

• Demo the project for the class (~15 mins during last 2 weeks)

– Show your results

• Turn in a short write-up describing your project and results (due May 2)
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Course Project

• Meet with me and/or Travis about two times (more if needed)

– We’ll help you get started and make sure you picked a hard/easy 
enough goal

• For one person:

– Pick a small data set (or generate synthetic data)

– Formulate a learning/inference problem using MRFs, CRFs, Bayesian 
networks

– Example:  SPAM filtering with a Bayesian network using the UCI 
spambase data set (or other data sets)

– Compare performance across data sets and versus naïve algorithms
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Course Project

• For four people:

– Pick a more complex data set

– The graphical model that you learn should be more complicated 
than a simple Bayesian network

– Ideally, the project will involve both learning and prediction using 
a CRF or an MRF (or a Bayesian network with hidden variables)

– Example:  simple binary image segmentation or smallish images

– Be ambitious but cautious, you don’t want to spend a lot of time 
formatting the data or worrying about feature selection
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Course Project

• Lots of other projects are possible

– Read about, implement, and compare different approximate MAP 
inference algorithms (loopy BP, tree-reweighted belief 
propagation, max-sum diffusion)

– Compare different approximate MLE schemes on synthetic data 
(e.g., minimum s-t cuts)

– Perform a collection of experiments to determine when the MAP 
LP is tight across a variety of pairwise, non-binary MRFs

– If you are stuck, have a vague idea, ask me about it!
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Course Project

• What you need to do now

– Find some friends

– Pick a project

– Email me and Travis (with all of your group members cc’d) by 
3/18

• Grade will be determined based on the demo, final report, and 
project difficulty
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Maximum Entropy

max
𝑞𝑞1,…,𝑞𝑞𝑚𝑚

�
𝑚𝑚

𝐻𝐻(𝑞𝑞𝑚𝑚)

such that the moment matching condition is satisfied

�
𝑚𝑚

𝑓𝑓(𝑥𝑥𝑚𝑚,𝑦𝑦𝑚𝑚) = �
𝑚𝑚

�
𝑥𝑥

𝑞𝑞𝑚𝑚 𝑥𝑥|𝑦𝑦𝑚𝑚 𝑓𝑓 𝑥𝑥,𝑦𝑦𝑚𝑚

and 𝑞𝑞1, … , 𝑞𝑞𝑚𝑚 are discrete probability distributions

• Instead of maximizing the log-likelihood, we could maximize the 
entropy over all approximating distributions that satisfy the moment 
matching condition!
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Regularized MLE

• 𝐿𝐿2 regularizer with a constant 𝜆𝜆

– 𝜆𝜆 is unknown and is chosen by cross-validation 

Regularized log-likelihood:

𝜃𝜃,�
𝑚𝑚

�
𝐶𝐶

𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶𝑚𝑚,𝑦𝑦𝑚𝑚 −�
𝑚𝑚

log𝑍𝑍 𝜃𝜃, 𝑦𝑦𝑚𝑚 −
𝜆𝜆
2

𝜃𝜃 2
2

Regularized maximum entropy:

max
𝑞𝑞1,…,𝑞𝑞𝑚𝑚

�
𝑚𝑚

𝐻𝐻(𝑞𝑞𝑚𝑚) −
1
2𝜆𝜆 �

𝑚𝑚

𝑓𝑓(𝑥𝑥𝑚𝑚,𝑦𝑦𝑚𝑚) −�
𝑚𝑚

�
𝑥𝑥

𝑞𝑞𝑚𝑚 𝑥𝑥|𝑦𝑦𝑚𝑚 𝑓𝑓 𝑥𝑥,𝑦𝑦𝑚𝑚

2

2
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Bethe Entropy

𝐻𝐻𝐵𝐵 𝜏𝜏 = −�
𝑖𝑖∈𝑉𝑉

�
𝑥𝑥𝑖𝑖

𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 log 𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 −�
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝜏𝜏𝐶𝐶 𝑥𝑥𝐶𝐶 log
𝜏𝜏𝐶𝐶 𝑥𝑥𝐶𝐶

∏𝑘𝑘∈𝐶𝐶 𝜏𝜏𝑘𝑘(𝑥𝑥𝑘𝑘)

• 𝜏𝜏 are pseudomarginals in the marginal polytope

• Not concave in general

– Real entropy is concave

– Can make it concave by “reweighting” some of the pieces
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Concave Entropy Approximations

𝐻𝐻𝜌𝜌 𝜏𝜏 = −�
𝑖𝑖∈𝑉𝑉

�
𝑥𝑥𝑖𝑖

𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 log 𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 −�
𝐶𝐶

𝜌𝜌𝐶𝐶�
𝑥𝑥𝐶𝐶

𝜏𝜏𝐶𝐶 𝑥𝑥𝐶𝐶 log
𝜏𝜏𝐶𝐶 𝑥𝑥𝐶𝐶

∏𝑘𝑘∈𝐶𝐶 𝜏𝜏𝑘𝑘(𝑥𝑥𝑘𝑘)

= −�
𝑖𝑖∈𝑉𝑉

�
𝑥𝑥𝑖𝑖

1 −�
𝐶𝐶⊃𝑖𝑖

𝜌𝜌𝐶𝐶 𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 log 𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 −�
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝜏𝜏𝐶𝐶 𝑥𝑥𝐶𝐶 log 𝜏𝜏𝐶𝐶 𝑥𝑥𝐶𝐶

• For each clique C, choose some real number 𝜌𝜌𝐶𝐶 ≥ 0

– We can always choose the 𝜌𝜌 such that the resulting approximation 
is concave

– Use this as a surrogate for the true entropy
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Reweighted Maximum Entropy

max
𝜏𝜏1,…,𝜏𝜏𝑀𝑀∈𝑇𝑇

�
𝑚𝑚

𝐻𝐻𝜌𝜌(𝜏𝜏𝑚𝑚) −
1
2𝜆𝜆 �

𝑚𝑚

𝑓𝑓(𝑥𝑥𝑚𝑚,𝑦𝑦𝑚𝑚) −�
𝑚𝑚

�
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝜏𝜏𝐶𝐶𝑚𝑚 𝑥𝑥𝐶𝐶|𝑦𝑦𝑚𝑚 𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶 ,𝑦𝑦𝑚𝑚

2

2

• For appropriate choice of 𝜌𝜌 this is a constrained concave 
optimization problem

• How do we maximize constrained concave functions?

– Gradient ascent can step outside of the constraint set…

• Projecting back in can be computationally expensive
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Reweighted Maximum Entropy

max
𝜏𝜏1,…,𝜏𝜏𝑀𝑀∈𝑇𝑇

�
𝑚𝑚

𝐻𝐻𝜌𝜌(𝜏𝜏𝑚𝑚) −
1
2𝜆𝜆 �

𝑚𝑚

𝑓𝑓(𝑥𝑥𝑚𝑚,𝑦𝑦𝑚𝑚) −�
𝑚𝑚

�
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝜏𝜏𝐶𝐶𝑚𝑚 𝑥𝑥𝐶𝐶|𝑦𝑦𝑚𝑚 𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶 ,𝑦𝑦𝑚𝑚

2

2

• This approximate maximum entropy optimization problem is dual to 
an approximate MLE optimization problem where we approximate 𝑍𝑍
using the Bethe free energy with a concave entropy approximation

– Note:  duality holds when this problem is concave and you choose 
the same 𝜌𝜌 for both max-entropy and MLE
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Gradient Descent

• Let’s suppose that we want to minimize a convex function 𝑓𝑓(𝑥𝑥) over a 
convex set 𝑆𝑆

• Start with an initial point 𝑥𝑥0 ∈ 𝑆𝑆

𝑥𝑥𝑡𝑡 = 𝑥𝑥𝑡𝑡−1 − 𝛾𝛾𝑡𝑡𝛻𝛻𝑓𝑓(𝑥𝑥𝑡𝑡−1)

– 𝛾𝛾𝑡𝑡 is a step size

• Idea:  step along a decreasing direction
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Method of Conditional Gradients

• Also known as the Frank-Wolfe algorithm

• To minimize a convex function over a convex set, it suffices to solve a 
series of linear optimization problems

• Let’s suppose that we want to minimize a convex function 𝑓𝑓(𝑥𝑥) over a 
convex set 𝑆𝑆

• Start with an initial point 𝑥𝑥0 ∈ 𝑆𝑆

𝑠𝑠𝑡𝑡 = arg min
𝑥𝑥∈𝑆𝑆

𝑥𝑥,𝛻𝛻𝑓𝑓(𝑥𝑥𝑡𝑡−1)

𝑥𝑥𝑡𝑡 = (1 − 𝛾𝛾𝑡𝑡)𝑥𝑥𝑡𝑡−1+𝛾𝛾𝑡𝑡𝑠𝑠𝑡𝑡
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Method of Conditional Gradients

• Start with an initial point 𝑥𝑥0 ∈ 𝑆𝑆

𝑠𝑠𝑡𝑡 = arg min
𝑥𝑥∈𝑆𝑆

𝑥𝑥,𝛻𝛻𝑓𝑓(𝑥𝑥𝑡𝑡−1)

𝑥𝑥𝑡𝑡 = (1 − 𝛾𝛾𝑡𝑡)𝑥𝑥𝑡𝑡−1+𝛾𝛾𝑡𝑡𝑠𝑠𝑡𝑡

• 𝛾𝛾𝑡𝑡 is the step size  

– The algorithm is guaranteed to converge if 𝛾𝛾𝑡𝑡 = 2
2+𝑡𝑡

– Other choices are also possible

15



Reweighted Maximum Entropy

𝐸𝐸𝑛𝑛𝑛𝑛 𝜏𝜏1, … , 𝜏𝜏𝑀𝑀 =�
𝑚𝑚

𝐻𝐻𝜌𝜌(𝜏𝜏𝑚𝑚) −
1
2𝜆𝜆

�
𝑚𝑚

𝑓𝑓(𝑥𝑥𝑚𝑚 ,𝑦𝑦𝑚𝑚) −�
𝑚𝑚

�
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝜏𝜏𝐶𝐶𝑚𝑚 𝑥𝑥𝐶𝐶|𝑦𝑦𝑚𝑚 𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶 ,𝑦𝑦𝑚𝑚

2

2

• To apply FW, need to compute the gradient with respect to 𝜏𝜏1, … , 𝜏𝜏𝑀𝑀

• No matter what it ends up being, the optimization we need to solve is

arg max
𝜇𝜇1,…,𝜇𝜇𝑚𝑚∈𝑇𝑇

𝜇𝜇,𝛻𝛻𝐸𝐸𝐸𝐸𝐸𝐸(𝜏𝜏1, … , 𝜏𝜏𝑀𝑀)

• This is a linear programming problem over the local polytope

– This means it corresponds to solving an approximate MAP 
problem!

16



MAP LP

max
𝜏𝜏

�
𝑖𝑖∈𝑉𝑉

�
𝑥𝑥𝑖𝑖

𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 log𝜙𝜙𝑖𝑖 𝑥𝑥𝑖𝑖 + �
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸

�
𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗

𝜏𝜏𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 log𝜓𝜓𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗)

such that

For all 𝑖𝑖 ∈ 𝑉𝑉

For all 𝑖𝑖, 𝑗𝑗 ∈ 𝐸𝐸, 𝑥𝑥𝑖𝑖

For all 𝑖𝑖 ∈ 𝑉𝑉, 𝑥𝑥𝑖𝑖

For all 𝑖𝑖, 𝑗𝑗 ∈ 𝐸𝐸, 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗

�
𝑥𝑥𝑖𝑖

𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 = 1

�
𝑥𝑥𝑗𝑗

𝜏𝜏𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗) = 𝜏𝜏𝑖𝑖(𝑥𝑥𝑖𝑖)

𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 ∈ [0,1]

𝜏𝜏𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 ∈ [0,1]
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Reweighted Maximum Entropy

𝐸𝐸𝐸𝐸𝐸𝐸 𝜏𝜏1, … , 𝜏𝜏𝑀𝑀 =�
𝑚𝑚

𝐻𝐻𝜌𝜌(𝜏𝜏𝑚𝑚) −
1
2𝜆𝜆

�
𝑚𝑚

𝑓𝑓(𝑥𝑥𝑚𝑚 ,𝑦𝑦𝑚𝑚) −�
𝑚𝑚

�
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝜏𝜏𝐶𝐶𝑚𝑚 𝑥𝑥𝐶𝐶|𝑦𝑦𝑚𝑚 𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶 ,𝑦𝑦𝑚𝑚

2

2

• Can solve this optimization problem just by solving a series of 
approximate MAP (linear programming problems)

– Many general purpose solvers exist for LPs

– Could use belief propagation!
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Reweighted Sum-Product

• We know that fixed points of loopy BP correspond to local optima of 
the Bethe free energy

• Is there an analog of sum-product for each choice of 𝜌𝜌?

– Yes!
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Reweighted Sum-Product

• 𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 = 1
𝑍𝑍
∏𝑖𝑖∈𝑉𝑉 𝜙𝜙𝑖𝑖(𝑥𝑥𝑖𝑖)∏ 𝑖𝑖,𝑗𝑗 ∈𝐸𝐸 𝜓𝜓𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗)

𝑚𝑚𝑖𝑖→𝑗𝑗 𝑥𝑥𝑗𝑗 = �
𝑥𝑥𝑖𝑖

𝜙𝜙𝑖𝑖 𝑥𝑥𝑖𝑖 𝜓𝜓𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗
1
𝜌𝜌𝑖𝑖𝑖𝑖

∏𝑘𝑘∈𝑁𝑁 𝑖𝑖 𝑚𝑚𝑘𝑘→i 𝑥𝑥𝑖𝑖 𝜌𝜌𝑘𝑘𝑘𝑘

𝑚𝑚𝑗𝑗→𝑖𝑖 𝑥𝑥𝑖𝑖

• 𝜌𝜌 = 1 is equal to regular belief propagation
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Image Segmentation



Image Segmentation

This image is 159x100 = 15,900 pixels

215,900 different possible segmentations!



Image Segmentation

Given a set of labeled training examples, we want to learn the weights 
of an Ising model (with features) to correctly predict the segmentation 
of an unseen horse 

?



Image Segmentation

Unseen Test Image Ground Truth Segmentation

100 iterations
(9 mins)
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Image Segmentation

Unseen Test Image Ground Truth Segmentation

250 iterations
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Image Segmentation

Unseen Test Image Ground Truth Segmentation

2,000 iterations
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Image Segmentation

Unseen Test Image Ground Truth Segmentation

11,750 iterations
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Image Segmentation

Unseen Test Image Ground Truth Segmentation

100,000 iterations
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Image Segmentation

Unseen Test Image Ground Truth Segmentation

250,000 iterations
(3.7 hours)
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Test Error Over Time
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Hidden Variables

• So far, we’ve only considered the case where all of the variables in the 
model were fully observed

• How do we handle situations in which some of the variables are 
hidden?

• Given a MRF over observed variables 𝑥𝑥 and hidden variables ℎ, we 
can still write down the log-likelihood

log ℓ(𝜃𝜃) = �
𝑚𝑚

log𝑝𝑝(𝑥𝑥𝑚𝑚|𝜃𝜃)

= �
𝑚𝑚

�
ℎ

log𝑝𝑝(𝑥𝑥𝑚𝑚,ℎ|𝜃𝜃)
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Hidden Variables

• So far, we’ve only considered the case where all of the variables in the 
model were fully observed

• How do we handle situations in which some of the variables are 
hidden?

• Given a MRF over observed variables 𝑥𝑥 and hidden variables ℎ, we 
can still write down the log-likelihood

log ℓ(𝜃𝜃) = �
𝑚𝑚

log𝑝𝑝(𝑥𝑥𝑚𝑚|𝜃𝜃)

= �
𝑚𝑚

�
ℎ

log𝑝𝑝(𝑥𝑥𝑚𝑚,ℎ|𝜃𝜃)

NOT concave in 𝜽𝜽!
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