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Lecture 16

Expectation Maximization



Unobserved Variables
=

* |Latent or hidden variables in the model are never observed

* We may or may not be interested in their values, but their
existence is crucial to the model

* Some observations in a particular sample may be missing

» Missing information on surveys or medical records (quite
common)

* We may need to model how the variables are missing




Hidden Markov Models

p(x1, o X7, Y1, 0, Y1) = D)0 (X1 |Y1) HP(Ytb’t—ﬂp(xtb’t)
t

e X's are observed variables, Y's are latent

» Example: X variables correspond sizes of tree growth rings for one
year, the Y variables correspond to average temperature




Missing Data

« Data can be missing from the model in many different ways

— Missing completely at random: the probability that a data item is
missing is independent of the observed data and the other
missing data

— Missing at random: the probability that a data item is missing
can depend on the observed data

— Missing not at random: the probability that a data item is missing
can depend on the observed data and the other missing data




Handling Missing Data

* Discard all incomplete observations
— Can introduce bias

» Imputation: actual values are substituted for missing values so that all of
the data is fully observed

— E.g., find the most probable assignments for the missing data and
substitute them in (not possible if the model is unknown)

— Use the sample mean/mode
* Explicitly model the missing data
— For example, could expand the state space

— The most sensible solution, but may be non-trivial if we don’t know
how/why the data is missing




Modelling Missing Data

* Add additional binary variable m; to the model for each possible
observed variable x; that indicates whether or not that variable is
observed

p(xobs: Xmis m) = p(mlxobs: xmis)p(xobs: Xmis)




Modelling Missing Data

* Add additional binary variable m; to the model for each possible
observed variable x; that indicates whether or not that variable is
observed

p(xobs: Xmis m) =\p (mlebS' xmis)’p (Xobs» Xmis)
|

Explicit model of the missing data
(missing not at random)




Modelling Missing Data

* Add additional binary variable m; to the model for each possible
observed variable x; that indicates whether or not that variable is
observed

p(xObSi Xmis m) = ‘P (mlxobs?p(xoby Xmis)
|
Missing at
random




Modelling Missing Data

* Add additional binary variable m; to the model for each possible
observed variable x; that indicates whether or not that variable is
observed

p(xobs: Xmis m) — p(m)p(xobsw xmis)
Missing

completely at
random




Modelling Missing Data

* Add additional binary variable m; to the model for each possible
observed variable x; that indicates whether or not that variable is
observed

p(xobs: Xmis m) — p(m)p(xobsw xmis)

Missing
completely at
random

How can you model latent
variables in this framework?
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Learning with Missing Data
e

* In orderto design learning algorithms for models with missing data,
we will make two assumptions

— The data is missing at random

— The model parameters corresponding to the missing data (J) are
separate from the model parameters of the observed data (6)

 Thatis

p(xops,m|6,6) = p(m|x,yps, 5)p(xob5|8)

11



Learning with Missing Data

p(xops, m|B,6) = p(m|x,ps, 6)0(Xops|6)

* Under the previous assumptions, the log-likelihood of samples
(x,mb), .., (xX, mf)is equal to

1(6,6) = z log p(m*|xgps, 8) + 2 log 2 P(Xgps, Xmis, |0)

xmlsk
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Learning with Missing Data

p(xops, m|6,6) = p(Mm|x,ps, )0 (Xops|6)

* Under the previous assumptions, the log-likelihood of samples
(x,mb), .., (xX, mf)is equal to

1(6,6) = z log p (|, 8) + Z 108 ) P(xhpsyo Xomis, 6)

xmlsk

\ J

|

Separable in 8 and 6, so if we don’t care about 9, then we
only have to maximize the second term over 6
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Learning with Missing Data

() = z log Z p(xobsk'xmlskle)

xmlsk

e This is NOT a concave function of 6

— In the worst case, could have a different local maximum for each
possible value of the missing data

— No longer have a closed form solution, even in the case of
Bayesian networks
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Expectation Maximization

* The expectation-maximization algorithm (EM) is method to find a

local maximum or a saddle point of the log-likelihood with missing
data

e Basicidea:
1(8) = 2 log z p(xobsk Xmis;|60)
xmlsk

K

k
) ] 9
E log E i (Xmis, ) - Pxabsyr mis|6)

dk (xmis)

Xmisy,

K k
, Xomic, |6
= E E Clk(xmisk)logp(xObSk xmlskl )

Ak (xmisk)

15




Expectation Maximization

k
y Xmis, |0
F(q,0) = z Z qk(xmlsk)logp(x()bsk xmwk| )

Ak (xmisk)

=1 Xmisy,

* Maximizing F is equivalent to the maximizing the log-likelihood

* Could maximize it using coordinate ascent

t+1

qtt! =arg max F(q,0%

d1,---9K

gt = argmax F(qt*1,0)
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Expectation Maximization

p(xgbsk'xmisk|9)
Xmic, )10
2 CIk( mlsk) g CIk(xmisk)

Xmisy,

* Thisisjust —d (qk||p(x§bsk,- |9))
* Maximized when g (Xymis, ) = P (Xmis, | Xops,r 0)

e Can reformulate the EM algorithm as

K
ot = argmglx Z 2 p(xmisklxgbsk’ Ht) logp(xcl)cbsk' xmisk|8)
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An Example: Bayesian Networks
-

* Recall that MLE for Bayesian networks without latent variables
yielded

XiXparents(i)

xil|x N
il parents(i) Z ,N / _
X; Xi”Xparents(i)

» Let’s suppose that we are given observations from a Bayesian
network in which one of the variables

— What do the iterations of the EM algorithm look like?

(on board)
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