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Alternatives to MLE



Alternatives to MLE

• Exact MLE estimation is intractable

– To compute the gradient of the log-likelihood, we need to 

compute the marginal of the model

• Alternatives include

– Pseudolikelihood approximation to the MLE problem that relies 

on computing only local probabilities

– For structured prediction problems, we could avoid likelihoods 

entirely by minimizing a loss function that measures our 

prediction error
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Pseudolikelihood

• Consider a log-linear MRF 𝑝 𝑥|𝜃 =
1

𝑍 𝜃
 𝐶 exp 𝜃, 𝑓𝑐(𝑥𝑐)

• By the chain rule, the joint distribution factorizes as

𝑝 𝑥|𝜃 = 

𝑖

𝑝(𝑥𝑖|𝑥1, … , 𝑥𝑖−1, 𝜃)

• This quantity can be approximated by conditioning on all of the other 

variables

𝑝 𝑥|𝜃 ≈ 

𝑖

𝑝(𝑥𝑖|𝑥1, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑛, 𝜃)
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Pseudolikelihood

• Using the independence relations from the MRF

𝑝 𝑥|𝜃 ≈ 

𝑖

𝑝(𝑥𝑖|𝑥𝑁 𝑖 , 𝜃)

• Only requires computing local probability distributions (typically 

much easier)

– Does not require knowing 𝑍(𝜃)
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Pseudolikelihood

• For samples 𝑥1, … , 𝑥𝑀

log ℓ𝑃𝐿(𝜃) = 

𝑚

 

𝑖

log 𝑝(𝑥𝑖
𝑚|𝑥𝑁 𝑖
𝑚 , 𝜃)

• This approximation is called the pseudolikelihood

– If the data is generated from a model of this form, then in the limit 

of infinite data, maximizing the pseudolikelihood recovers the 

true model parameters

– Can be much more efficient to compute than the log likelihood
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Pseudolikelihood

log ℓ𝑃𝐿(𝜃) = 

𝑚

 

𝑖

log 𝑝(𝑥𝑖
𝑚|𝑥𝑁 𝑖
𝑚 , 𝜃)

= 

𝑚

 

𝑖

log
𝑝 𝑥𝑖
𝑚, 𝑥𝑁 𝑖
𝑚 𝜃

 
𝑥𝑖
′ 𝑝 𝑥𝑖
′, 𝑥𝑁 𝑖
𝑚 𝜃

= 

𝑚

 

𝑖

log 𝑝 𝑥𝑖
𝑚, 𝑥𝑁 𝑖
𝑚 𝜃 − log 

𝑥𝑖
′

𝑝 𝑥𝑖
′, 𝑥𝑁 𝑖
𝑚 𝜃

= 

𝑚

 

𝑖

𝜃, 

𝐶⊃𝑖

𝑓𝐶(𝑥𝐶
𝑚) − log 

𝑥𝑖
′

exp 𝜃, 

𝐶⊃𝑖

𝑓𝐶(𝑥𝑖
′, 𝑥𝐶∖𝑖
𝑚 )
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Pseudolikelihood

log ℓ𝑃𝐿(𝜃) = 

𝑚

 

𝑖

log 𝑝(𝑥𝑖
𝑚|𝑥𝑁 𝑖
𝑚 , 𝜃)

= 

𝑚

 

𝑖

log
𝑝 𝑥𝑖
𝑚, 𝑥𝑁 𝑖
𝑚 𝜃

 
𝑥𝑖
′ 𝑝 𝑥𝑖
′, 𝑥𝑁 𝑖
𝑚 𝜃

= 

𝑚

 

𝑖

log 𝑝 𝑥𝑖
𝑚, 𝑥𝑁 𝑖
𝑚 𝜃 − log 

𝑥𝑖
′

𝑝 𝑥𝑖
′, 𝑥𝑁 𝑖
𝑚 𝜃

= 

𝑚

 

𝑖

𝜃, 

𝐶⊃𝑖

𝑓𝐶(𝑥𝐶
𝑚) − log 

𝑥𝑖
′

exp 𝜃, 

𝐶⊃𝑖

𝑓𝐶(𝑥𝑖
′, 𝑥𝐶∖𝑖
𝑚 )
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Only involves summing over 𝑥𝑖!



Pseudolikelihood

log ℓ𝑃𝐿(𝜃) = 

𝑚

 

𝑖

log 𝑝(𝑥𝑖
𝑚|𝑥𝑁 𝑖
𝑚 , 𝜃)

= 

𝑚

 

𝑖

log
𝑝 𝑥𝑖
𝑚, 𝑥𝑁 𝑖
𝑚 𝜃

 
𝑥𝑖
′ 𝑝 𝑥𝑖
′, 𝑥𝑁 𝑖
𝑚 𝜃

= 

𝑚

 

𝑖

log 𝑝 𝑥𝑖
𝑚, 𝑥𝑁 𝑖
𝑚 𝜃 − log 

𝑥𝑖
′

𝑝 𝑥𝑖
′, 𝑥𝑁 𝑖
𝑚 𝜃

= 

𝑚

 

𝑖

𝜃, 

𝐶⊃𝑖

𝑓𝐶(𝑥𝐶
𝑚) − log 

𝑥𝑖
′

exp 𝜃, 

𝐶⊃𝑖

𝑓𝐶(𝑥𝑖
′, 𝑥𝐶∖𝑖
𝑚 )
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Concave in 𝜃!



Consistency of Pseudolikelihood

• Pseudolikelihood is a consistent estimator

– That is, in the limit of large data, it is exact if the true model 

belongs to the family of distributions being modeled

𝛻𝜃ℓ𝑃𝐿 = 

𝑚

 

𝑖

 

𝐶⊃𝑖

𝑓𝐶(𝑥𝐶
𝑚) −
 
𝑥𝑖
′ exp 𝜃,  𝐶⊃𝑖 𝑓𝐶 𝑥𝑖

′, 𝑥𝐶∖𝑖
𝑚  𝐶⊃𝑖 𝑓𝐶 𝑥𝑖

′, 𝑥𝐶∖𝑖
𝑚

 
𝑥𝑖
′ exp 𝜃,  𝐶⊃𝑖 𝑓𝐶 𝑥𝑖

′, 𝑥𝐶∖𝑖
𝑚

= 

𝑚

 

𝑖

 

𝐶⊃𝑖

𝑓𝐶(𝑥𝐶
𝑚) − 

𝑥𝑖
′

𝑝(𝑥𝑖
′|𝑥𝑁 𝑖
𝑚 , 𝜃) 

𝐶⊃𝑖

𝑓𝐶 𝑥𝑖
′, 𝑥𝐶∖𝑖
𝑚
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Can check that the gradient is zero in the limit of large data if 𝜃 = 𝜃∗



Structured Prediction

• Suppose we have a CRF, 𝑝 𝑥 𝑦, 𝜃 =
1

𝑍 𝜃,𝑦
 𝐶 exp( 𝜃, 𝑓𝐶(𝑥𝐶 , 𝑦)

• If goal is to compute argmax
𝑥
𝑝(𝑥|𝑦), then MLE may be overkill

– We only care about classification error, not about learning the 
correct marginal distributions as well

• Recall that the classification error is simply the expected number of 
incorrect predictions made by the learned model on samples from the 
true distribution

• Instead of maximizing the likelihood, we can minimize the 
classification error over the training set
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Structured Prediction

• For samples 𝑥1, 𝑦1 , … , (𝑥𝑀, 𝑦𝑀), the (unnormalized) 

classification error is

 

𝑚

1 𝑥𝑚∈ argmax𝑥𝑝(𝑥|𝑦𝑚,𝜃)

• The classification error is zero when 𝑝 𝑥𝑚 𝑦𝑚, 𝜃 ≥ 𝑝(𝑥|𝑦𝑚, 𝜃)
for all 𝑥 and 𝑚 or equivalently

𝜃, 

𝐶

𝑓𝐶(𝑥𝐶
𝑚, 𝑦𝑚) ≥ 𝜃, 

𝐶

𝑓𝐶(𝑥𝐶 , 𝑦
𝑚)
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Structured Prediction

• In the exact case, this can be thought of as having a linear constraint 

for each possible 𝑥 and each 𝑦1, … , 𝑦𝑀

𝜃, 

𝐶

𝑓𝐶 𝑥𝐶
𝑚, 𝑦𝑚 − 𝑓𝐶(𝑥𝐶 , 𝑦

𝑚) ≥ 0

• Any 𝜃 that simultaneously satisfies each of these constraints will 

guarantee that the classification error is zero

– As there are exponentially many constraints, finding such a 𝜃 (if 

one even exists) is still a challenging problem

– If such a 𝜃 exists, we say that the problem is separable
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Structured Perceptron Algorithm

• In the separable case, a straightforward algorithm can be designed 

to for this task

• Choose an initial 𝜃

• Iterate until convergence

– For each 𝑚

• Choose 𝑥′ ∈ argmax𝑥𝑝(𝑥|𝑦
𝑚, 𝜃)

• Set 𝜃 = 𝜃 +  𝐶 𝑓𝐶 𝑥𝐶
𝑚, 𝑦𝑚 − 𝑓𝐶(𝑥𝐶

′ , 𝑦𝑚)
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Other Alternatives

• Piecewise likelihood uses the observation that 𝑍(𝜃) is a convex function of 
𝜃

𝑍  

𝑇

𝛼𝑇𝜃𝑇 ≤ 

𝑇

𝛼𝑇𝑍(𝜃𝑇)

– If 𝑍(𝜃𝑇) corresponds to a tree-structured distribution, then the upper 
bound can be computed in polynomial time

– To do learning, we minimize the upper bound over 𝜃1, … , 𝜃𝑇

– Instead of using arbitrary 𝑇, the piecewise likelihood constructs an 
upper bound on the objective function by summing over 𝜃|𝐶 obtained 
by zeroing out all components of 𝜃 except for those over the clique 𝐶
(not always possible)
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