CS 6347

Lecture 19

Introduction to Structure Learning



Structure Learning
e

* We have been focusing on parameter learning:

— E.g., given a graph structure, find the parameters that maximize
the log-likelihood

 In practice, the structure of the graph may not be known and may
need to be learned from the data

— For Bayesian networks, we may be only given samples and asked
to make predictions




BN Structure Learning

* Recall that for a fixed Bayesian network with fully observed data, the
MLE of the conditional probability tables was given by the empirical
probabilities
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Which one has the highest log-likelihood given
the data?
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* Determining the structure that maximizes the log-likelihood is not too
difficult

— A complete DAG always maximizes the log-likelihood
* Proof: next slide
— This almost certainly results in overfitting
* Alternative is to attempt to learn simple structures
— Approach 1: Optimize the log-likelihood over simple graphs

— Approach 2: Add a penalty term to the log-likelihood




Adding Edges Increases the MLE

Let p’ be the empirical probability distribution
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Approach 1: Chow-Liu Trees

* Suppose that we want to find the best tree-structured BN that
represents a given joint probability distribution

— Minimize the KL-divergence between the true distribution and the
one given by the BN

* First, let’s consider the infinite data limit

— We want to find the directed tree T that minimizes

d (p(x)ll 1_[ p(xi|xparent(iET))> =7
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Approach 1: Chow-Liu Trees

d (p(x)” 1_[ p(xi|xparent(iET))> = _H(p) + Z H(pi) - Z [(xi; xj)
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R ) — e p(xi:xj) .
I(x;x;) = Yxix; p(x;, x;) log o) S called the mutual

information

— Measures the dependence between two random variables

* Minimizing the KL-divergence over all directed trees is then
equivalent to finding
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Approach 1: Chow-Liu Trees

m’f}X 2 I(Xl';x]')
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* This problem can be solved by finding the maximum weight spanning
tree in the complete graph with edge weight w;; given by the mutual

information over the edge (i, j)

— Greedy algorithm works: at each step, pick the largest remaining
edge that does not form a cycle when added to the already
selected edges
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Approach 1: Chow-Liu Trees

* To use this technique for learning, we simply compute the mutual
information for each edge using the empirical probability
distributions and then find the max-weight spanning tree

— Why does this maximize the log-likelihood?

* Asaresult, we can learn tree-structured BNs in polynomial time

— Can we generalize this to all DAGs?
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Chow-Liu Trees: Example

32

* Edge weights correspond to empirical mutual information for the
earlier samples
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Chow-Liu Trees: Example
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* Edge weights correspond to empirical mutual information for the
earlier samples
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Chow-Liu Trees: Example
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* Anydirected tree over these edges maximizes the log-likelihood

— Why doesn’t the direction matter?

17




Approach 2: Penalized Likelihood

* Add a penalty term to the log-likelihood that can depend on the
number of samples and the chosen structure

£(G,0) = ) logps(x™|6) — n(M)Dim(G)

* 1 (M) is only a function of the number of data points
— n(M) = constant called the Akaike information criterion

log(M)
2

— n(m) = called the Bayesian information criterion

* Dim(G) is the number of parameters needed to represent G
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