

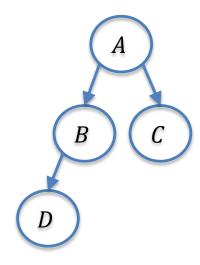
CS 6347

Lecture 19

Introduction to Structure Learning

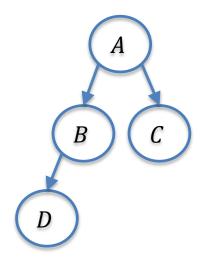
- We have been focusing on parameter learning:
 - E.g., given a graph structure, find the parameters that maximize the log-likelihood
- In practice, the structure of the graph may not be known and may need to be learned from the data
 - For Bayesian networks, we may be only given samples and asked to make predictions

 Recall that for a fixed Bayesian network with fully observed data, the MLE of the conditional probability tables was given by the empirical probabilities



Α	В	С	D
0	0	1	0
0	0	1	1
0	1	0	0
1	0	0	1
0	0	1	1

 Recall that for a fixed Bayesian network with fully observed data, the MLE of the conditional probability tables was given by the empirical probabilities



Α	В	С	D
0	0	1	0
0	0	1	1
0	1	0	0
1	0	0	1
0	0	1	1

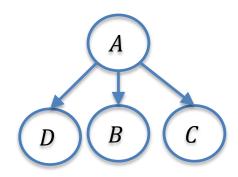
Α	P(A)
0	4/5
1	1/5

В	D	P(D B)
0	0	1/4
0	1	3/4
1	0	1
1	1	0

Α	В	P(B A)
0	0	3/4
0	1	1/4
1	0	1
1	1	0

Α	С	P(C A)
0	0	1/4
0	1	3/4
1	0	1
1	1	0

 Recall that for a fixed Bayesian network with fully observed data, the MLE of the conditional probability tables was given by the empirical probabilities



Α	В	С	D
0	0	1	0
0	0	1	1
0	1	0	0
1	0	0	1
0	0	1	1

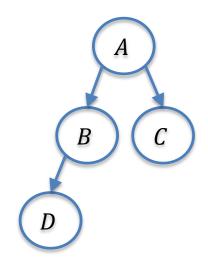
Α	P(A)
0	4/5
1	1/5

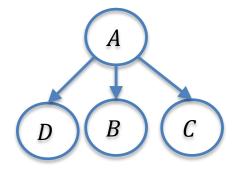
A	D	P(D A)
0	0	1/2
0	1	1/2
1	0	0
1	1	1

A	В	P(B A)
0	0	3/4
0	1	1/4
1	0	1
1	1	0

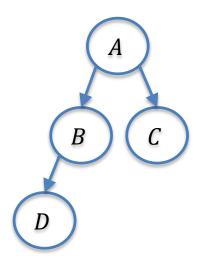
Α	С	P(C A)
0	0	1/4
0	1	3/4
1	0	1
1	1	0

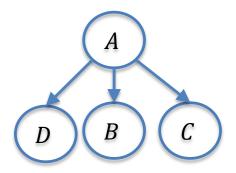
Which model should be preferred?





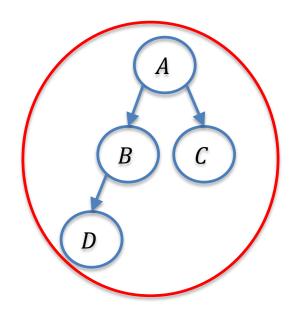
Which model should be preferred?

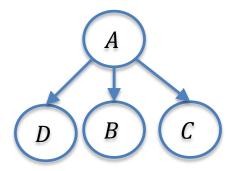




Which one has the highest log-likelihood given the data?

Which model should be preferred?

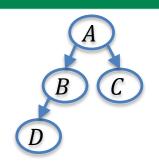


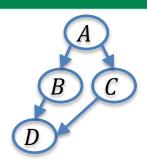


Which one has the highest log-likelihood given the data?

- Determining the structure that maximizes the log-likelihood is not too difficult
 - A complete DAG always maximizes the log-likelihood
 - Proof: next slide
 - This almost certainly results in overfitting
- Alternative is to attempt to learn simple structures
 - Approach 1: Optimize the log-likelihood over simple graphs
 - Approach 2: Add a penalty term to the log-likelihood

Adding Edges Increases the MLE





Let p' be the empirical probability distribution

$$\frac{\ell_2 - \ell_1}{M} = \frac{1}{M} \sum_{m} \log \frac{p'(x_D^m | x_B^m, x_C^m)}{p'(x_D^m | x_B^m)}$$

$$= \sum_{x} p'(x_B, x_C, x_D) \log \frac{p'(x_D | x_B, x_C)}{p'(x_D | x_B)}$$

$$= \sum_{x} p'(x_B, x_C, x_D) \log \frac{p'(x_B, x_C, x_D)}{p'(x_C | x_B) p'(x_D | x_B) p'(x_B)}$$

$$= d(p'(x_B, x_C, x_D) | | p'(x_C | x_B) p'(x_D | x_B) p'(x_B)) \ge 0$$

- Suppose that we want to find the best tree-structured BN that represents a given joint probability distribution
 - Minimize the KL-divergence between the true distribution and the one given by the BN
- First, let's consider the infinite data limit
 - We want to find the directed tree T that minimizes

$$d\left(p(x)||\prod_{i}p(x_{i}|x_{parent(i\in T)})\right) = ?$$

$$d\left(p(x)||\prod_{i}p(x_{i}|x_{parent(i\in T)})\right) = -H(p) + \sum_{i}H(p_{i}) - \sum_{(i,j)\in T}I(x_{i};x_{j})$$

- $I(x_i; x_j) = \sum_{x_i, x_j} p(x_i, x_j) \log \frac{p(x_i, x_j)}{p(x_i)p(x_j)}$ is called the mutual information
 - Measures the dependence between two random variables
- Minimizing the KL-divergence over all directed trees is then equivalent to finding

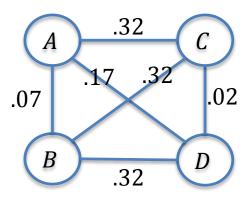
$$\max_{T} \sum_{(i,j) \in T} I(x_i; x_j)$$

$$\max_{T} \sum_{(i,j) \in T} I(x_i; x_j)$$

- This problem can be solved by finding the maximum weight spanning tree in the complete graph with edge weight w_{ij} given by the mutual information over the edge (i,j)
 - Greedy algorithm works: at each step, pick the largest remaining edge that does not form a cycle when added to the already selected edges

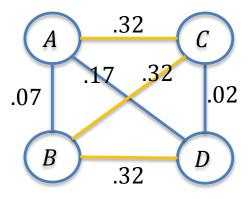
- To use this technique for learning, we simply compute the mutual information for each edge using the empirical probability distributions and then find the max-weight spanning tree
 - Why does this maximize the log-likelihood?
- As a result, we can learn tree-structured BNs in polynomial time
 - Can we generalize this to all DAGs?

Chow-Liu Trees: Example



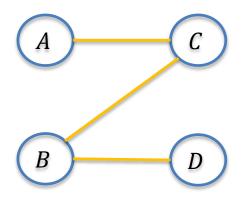
Edge weights correspond to empirical mutual information for the earlier samples

Chow-Liu Trees: Example



Edge weights correspond to empirical mutual information for the earlier samples

Chow-Liu Trees: Example



- Any directed tree over these edges maximizes the log-likelihood
 - Why doesn't the direction matter?

Approach 2: Penalized Likelihood

 Add a penalty term to the log-likelihood that can depend on the number of samples and the chosen structure

$$\ell(G,\theta) = \sum_{m} \log p_G(x^m | \theta) - \eta(M) Dim(G)$$

- $\eta(M)$ is only a function of the number of data points
 - $-\eta(M)=constant$ called the Akaike information criterion
 - $-\eta(m)=rac{\log(M)}{2}$ called the Bayesian information criterion
- Dim(G) is the number of parameters needed to represent G

