

**CS 6347** 

**Lecture 22** 

**Neural Networks** 

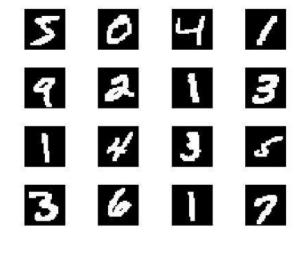
### **Classification Problems**

- We've been focusing primarily on two different types of learning problems
  - Classification: given a collection of labelled data for training,
     correctly predict the label of unseen/unlabelled data
  - Structured prediction
- Many natural machine learning tasks can be formulated as classification problems



# **Handwritten Digit Recognition**

- Given a collection of handwritten digits and their corresponding labels, we'd like to be able to correctly classify handwritten digits
  - A simple algorithmic technique can solve this problem with 95% accuracy
    - This seems surprising, in fact, stateof-the-art methods can achieve near 99% accuracy (you've probably seen these in action if you've deposited a check recently)



Digits from the MNIST data set



#### **Neural Networks**

- The basis of neural networks was developed in the 1940s 1960s
  - The idea was to build mathematical models that might "compute" in the same way that neurons in the brain do
  - As a result, neural networks are biologically inspired, though many of the algorithms that are used to work with them are not biologically plausible



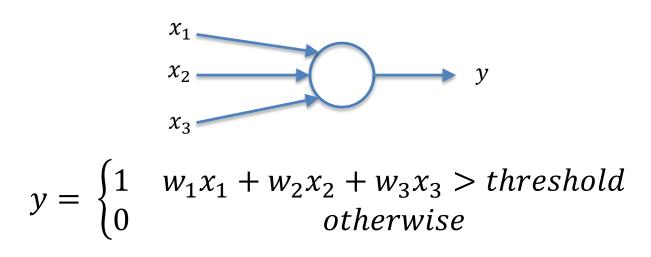
#### **Neural Networks**

- Neural networks consist of a collection of artificial neurons
- There are different types of neuron models that are commonly studied
  - The perceptron (one of the first studied)
  - The sigmoid neuron (most common)
- A neural network is typically a directed graph consisting of a collection of neurons (the nodes in the graph), directed edges (each with an associated weight), and a collection of fixed binary inputs



### The Perceptron

- A perceptron is an artificial neuron that takes a collection of binary inputs and produces a binary output
  - The output of the perceptron is determined by summing up the weighted inputs and thresholding the result: if the weighted sum is larger than the threshold, the output is one (and zero otherwise)





### The Perceptron

$$x_1$$
 $x_2$ 
 $y$ 
 $x_3$ 

$$y = \begin{cases} 1 & w_1x_1 + w_2x_2 + w_3x_3 > threshold \\ 0 & otherwise \end{cases}$$

- The weights can be both positive and negative
- Many simple decisions can be modeled using perceptrons
  - Example: AND, OR, NOT



## Perceptron for NOT



• Choose w = -1, threshold = -.5

$$y = \begin{cases} 1 & -x > -.5 \\ 0 & -x \le -.5 \end{cases}$$



# Perceptron for OR





# Perceptron for OR



- Choose  $w_1 = w_2 = 1$ , threshold = 0
- $y = \begin{cases} 1 & x_1 + x_2 > 0 \\ 0 & x_1 + x_2 \le 0 \end{cases}$



# **Perceptron for AND**





## Perceptron for AND



• Choose  $w_1 = w_2 = 1$ , threshold = 1.5

• 
$$y = \begin{cases} 1 & x_1 + x_2 > 1.5 \\ 0 & x_1 + x_2 \le 1.5 \end{cases}$$



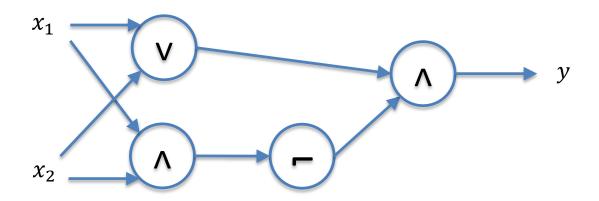
# **Perceptron for XOR**





# Perceptron for XOR

Need more than one perceptron!

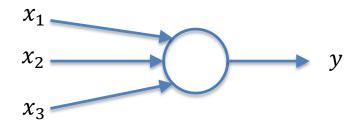


- Weights for incoming edges are chosen as before
  - Networks of perceptrons can encode any circuit!



### **Perceptrons**

• Perceptrons are usually expressed in terms of a collection of input weights and a bias b (which is the negative threshold)

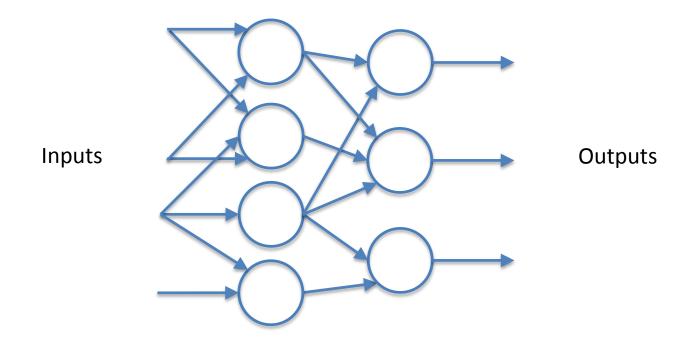


$$y = \begin{cases} 1 & w_1 x_1 + w_2 x_2 + w_3 x_3 + b > 0 \\ 0 & otherwise \end{cases}$$



#### **Neural Networks**

- Gluing a bunch of perceptrons together gives us a neural network
- In general, neural nets have a collection of binary inputs and a collection of binary outputs





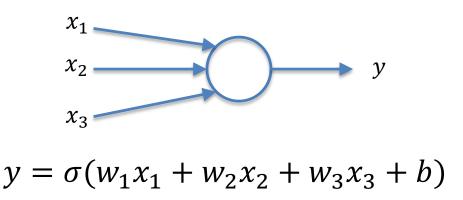
### **Beyond Perceptrons**

- Given a collection of input-output pairs, we'd like to learn the weights
  of the neural network so that we can correctly predict the ouput of an
  unseen input
  - We could try learning via gradient descent (e.g., by minimizing the error)
    - This approach doesn't work so well: small changes in the weights can cause dramatic changes in the output
    - This is a consequence of the discontinuity of the sharp thresholding



### The Sigmoid Neuron

- A sigmoid neuron is an artificial neuron that takes a collection of inputs in the interval [0,1] and produces an output in the interval [0,1]
  - The output is determined by summing up the weighted inputs plus the bias and applying the sigmoid function to the result



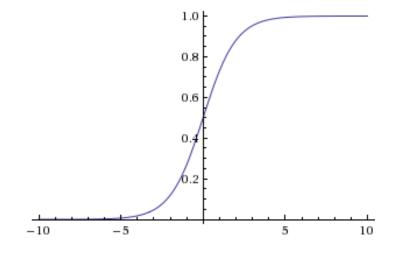
where  $\sigma$  is the sigmoid function



# The Sigmoid Function

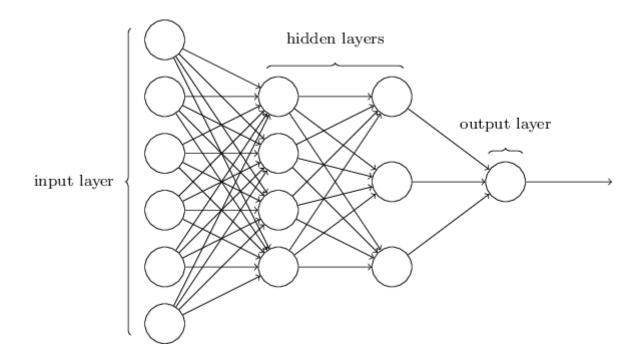
The sigmoid function is a continuous function that approximates a step function

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$





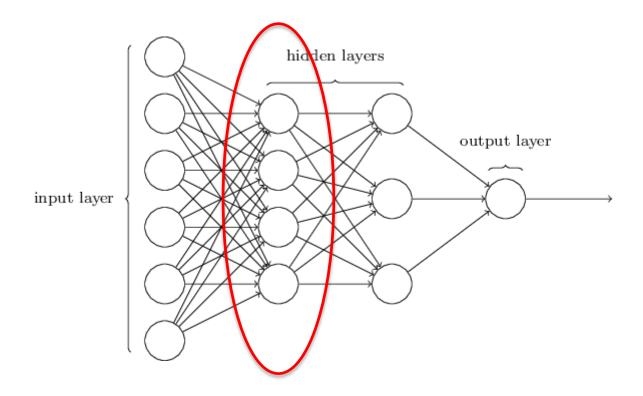
# **Multilayer Neural Networks**





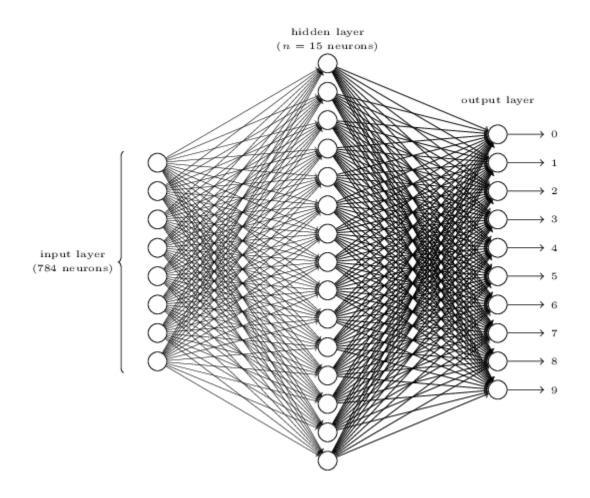
# **Multilayer Neural Networks**

#### NO intralayer connections



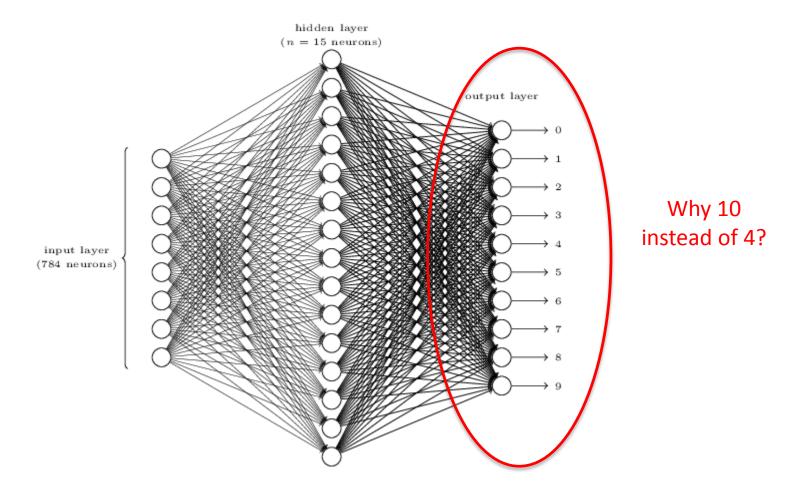


# **Neural Network for Digit Classification**





# **Neural Network for Digit Classification**





# **Training Neural Networks**

To do the learning, we first need to define a cost function to minimize

$$C(w,b) = \frac{1}{2M} \sum_{m} ||y^{m} - a(x^{m}, w, b)||^{2}$$

- The data consists of input output pairs  $(x^1, y^1), ..., (x^M, y^M)$
- a(x, w, b) is the output of the neural network for the  $m^{th}$  sample
- w and b are the weights an biases



### **Gradient of the Cost Function**

 The derivative of the cost function is relatively straightforward to calculate

$$\frac{\partial C(w,b)}{\partial w_k} = \frac{1}{M} \sum_{m} \left[ y^m - \frac{\partial a(x^m, w, b)}{\partial w_k} \right]$$

— To compute the derivative of a, use the chain rule and the derivative of the sigmoid function

$$\frac{d\sigma(z)}{dz} = \sigma(z) \cdot (1 - \sigma(z))$$

This gets complicated quickly with lots of layers of neurons



### **Stochastic Gradient Descent**

- To make the training more practical, stochastic gradient descent is used instead of standard gradient descent
- The idea of stochastic gradient descent is to approximate the gradient of a sum by sampling a few indices uniformly at random and averaging

$$\nabla_{x} \sum_{i=1}^{n} f_{i}(x) \approx \frac{1}{K} \sum_{k=1}^{K} \nabla_{x} f_{i^{k}}(x)$$

here, each  $i^k$  is sampled uniformly at random from  $\{1, ..., n\}$ 

