CS 6347

Lecture 22

Neural Networks

Classification Problems

* We've been focusing primarily on two different types of learning
problems

— Classification: given a collection of labelled data for training,
correctly predict the label of unseen/unlabelled data

— Structured prediction

* Many natural machine learning tasks can be formulated as
classification problems

Handwritten Digit Recognition

* Given a collection of handwritten digits and
their corresponding labels, we’d like to be
able to correctly classify handwritten digits

— A simple algorithmic technique can
solve this problem with 95% accuracy

* This seems surprising, in fact, state-
of-the-art methods can achieve near
99% accuracy (you've probably seen
these in action if you've deposited a Digits from the MNIST
check recently) data set

—ff 4L
N R JwllS

Neural Networks
_

» The basis of neural networks was developed in the 1940s -1960s

— The idea was to build mathematical models that might “compute”
in the same way that neurons in the brain do

— As a result, neural networks are biologically inspired, though
many of the algorithms that are used to work with them are not
biologically plausible

Neural Networks
_

* Neural networks consist of a collection of artificial neurons

* There are different types of neuron models that are commonly studied
— The perceptron (one of the first studied)
— The sigmoid neuron (most common)

* Aneural network is typically a directed graph consisting of a
collection of neurons (the nodes in the graph), directed edges (each
with an associated weight), and a collection of fixed binary inputs

The Perceptron
e

* A perceptron is an artificial neuron that takes a collection of binary
inputs and produces a binary output

— The output of the perceptron is determined by summing up the
weighted inputs and thresholding the result: if the weighted sum
is larger than the threshold, the output is one (and zero otherwise)

X

3

11 wyx; +wyx, + wixg > threshold
Y 0 otherwise

The Perceptron

_J1 wixy + wyxy + wixz > threshold
Y 0 otherwise
* The weights can be both positive and negative

* Many simple decisions can be modeled using perceptrons

— Example: AND, OR, NOT

Perceptron for NOT

x_.@_.y

e Choosew = —1, threshold = —.5

. _ 1 —x>-5
Y 0 —x<-5

Perceptron for OR

Perceptron for OR

* Choosew; = w, = 1, threshold = 0

o)1yt x >0
Y = 0 X1+XZSO

10

Perceptron for AND

11

Perceptron for AND

* Choose w; = w, = 1, threshold = 1.5

o)1 x1+x, > 1.5
Y=10 x +x,<15

12

Perceptron for XOR

13

Perceptron for XOR

* Need more than one perceptron!

* Weights forincoming edges are chosen as before

— Networks of perceptrons can encode any circuit!

14

Perceptrons
I ——

* Perceptrons are usually expressed in terms of a collection of input
weights and a bias b (which is the negative threshold)

_J1 wixg +wox, +wixz +b >0
Y 0 otherwise

15

Neural Networks
I

* Gluing a bunch of perceptrons together gives us a neural network

* |In general, neural nets have a collection of binary inputs and a
collection of binary outputs

Inputs Outputs

16

Beyond Perceptrons
-

* Given a collection of input-output pairs, we’d like to learn the weights
of the neural network so that we can correctly predict the ouput of an
unseen input

— We could try learning via gradient descent (e.g., by minimizing the
error)

 This approach doesn’t work so well: small changes in the
weights can cause dramatic changes in the output

* This is a consequence of the discontinuity of the sharp
thresholding

17

The Sigmoid Neuron

* Asigmoid neuron is an artificial neuron that takes a collection of
inputs in the interval [0,1] and produces an output in the interval
[0,1]

— The output is determined by summing up the weighted inputs plus
the bias and applying the sigmoid function to the result

X

3

Yy =0(Wixy +wyxy +w3x3 + b)

where o is the sigmoid function

18

The Sigmoid Function

» The sigmoid function is a continuous function that approximates a
step function

o2 =T /7

—10 —5 5 10

19

Multilayer Neural Networks
[——

input layer <

from Neural Networks and Deep Learning by Michael Nielson

20

Multilayer Neural Networks
[——

NO intralayer connections

input layer <

from Neural Networks and Deep Learning by Michael Nielson

21

Neural Network for Digit Classification

(n=1 18)
output layer
]
—— 1
2
3
Input layer) 4
(TB4d neurons) —
ot 2
]
T
= &
0

from Neural Networks and Deep Learning by Michael Nielson

22

Neural Network for Digit Classification

hidden layer
(n=1)
t la
0
— 1
2
— = . instead of 4?
(TH4 neurons) \ =)
: 5
< G
T
= 8
]

from Neural Networks and Deep Learning by Michael Nielson

23

Training Neural Networks

To do the learning, we first need to define a cost function to minimize

1
Cw,b) =5 > lly™ = a(x™ w, b1
m

The data consists of input output pairs (xl, yl), e (xM, yM)

h

 a(x,w,b) is the output of the neural network for the m*" sample

w and b are the weights an biases

24

Gradient of the Cost Function

* The derivative of the cost function is relatively straightforward to
calculate

dC(w, b) aa(x w, b)
2"

aWk

— To compute the derivative of a, use the chain rule and the
derivative of the sigmoid function

do(z)
dz

=0(z)-(1—-0a(2))
— This gets complicated quickly with lots of layers of neurons

25

Stochastic Gradient Descent

* To make the training more practical, stochastic gradient descent is
used instead of standard gradient descent

* The idea of stochastic gradient descent is to approximate the
gradient of a sum by sampling a few indices uniformly at random and

averaging
n 1 K
7,) fi) =7) Vef k()
i=1 k=1

here, each i is sampled uniformly at random from {1,..,n}

26

