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Neural Networks



Classification Problems

• We’ve been focusing primarily on two different types of learning 

problems

– Classification:  given a collection of labelled data for training, 

correctly predict the label of unseen/unlabelled data

– Structured prediction

• Many natural machine learning tasks can be formulated as 

classification problems
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Handwritten Digit Recognition

• Given a collection of handwritten digits and 

their corresponding labels, we’d like to be 

able to correctly classify handwritten digits

– A simple algorithmic technique can 

solve this problem with 95% accuracy

• This seems surprising, in fact, state-

of-the-art methods can achieve near 

99% accuracy (you’ve probably seen 

these in action if you’ve deposited a 

check recently)
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Digits from the MNIST 
data set



Neural Networks

• The basis of neural networks was developed in the 1940s -1960s

– The idea was to build mathematical models that might “compute” 

in the same way that neurons in the brain do

– As a result, neural networks are biologically inspired, though 

many of the algorithms that are used to work with them are not 

biologically plausible
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Neural Networks

• Neural networks consist of a collection of artificial neurons

• There are different types of neuron models that are commonly studied

– The perceptron (one of the first studied)

– The sigmoid neuron (most common)

• A neural network is typically a directed graph consisting of a 

collection of neurons (the nodes in the graph), directed edges (each 

with an associated weight), and a collection of fixed binary inputs
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The Perceptron

• A perceptron is an artificial neuron that takes a collection of binary 
inputs and produces a binary output

– The output of the perceptron is determined by summing up the 
weighted inputs and thresholding the result:  if the weighted sum 
is larger than the threshold, the output is one (and zero otherwise)  

𝑦 =  
1 𝑤1𝑥1 +𝑤2𝑥2 +𝑤3𝑥3 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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The Perceptron

𝑦 =  
1 𝑤1𝑥1 +𝑤2𝑥2 +𝑤3𝑥3 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• The weights can be both positive and negative

• Many simple decisions can be modeled using perceptrons

– Example:   AND, OR, NOT
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Perceptron for NOT

• Choose 𝑤 = −1, threshold = −.5

• 𝑦 =  
1 −𝑥 > −.5
0 −𝑥 ≤ −.5
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⌐𝑥 𝑦



Perceptron for OR
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Perceptron for OR

• Choose 𝑤1 = 𝑤2 = 1, threshold = 0

• 𝑦 =  
1 𝑥1 + 𝑥2 > 0
0 𝑥1 + 𝑥2 ≤ 0
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Perceptron for AND
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Perceptron for AND

• Choose 𝑤1 = 𝑤2 = 1, threshold = 1.5

• 𝑦 =  
1 𝑥1 + 𝑥2 > 1.5
0 𝑥1 + 𝑥2 ≤ 1.5
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Perceptron for XOR
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Perceptron for XOR

• Need more than one perceptron!

• Weights for incoming edges are chosen as before

– Networks of perceptrons can encode any circuit!
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Perceptrons

• Perceptrons are usually expressed in terms of a collection of input 

weights and a bias 𝑏 (which is the negative threshold)

𝑦 =  
1 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑏 > 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Neural Networks

• Gluing a bunch of perceptrons together gives us a neural network

• In general, neural nets have a collection of binary inputs and a 

collection of binary outputs
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Beyond Perceptrons

• Given a collection of input-output pairs, we’d like to learn the weights 

of the neural network so that we can correctly predict the ouput of an 

unseen input

– We could try learning via gradient descent (e.g., by minimizing the 

error)

• This approach doesn’t work so well:  small changes in the 

weights can cause dramatic changes in the output 

• This is a consequence of the discontinuity of the sharp 

thresholding
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The Sigmoid Neuron

• A sigmoid neuron is an artificial neuron that takes a collection of 

inputs in the interval [0,1] and produces an output in the interval 

[0,1]

– The output is determined by summing up the weighted inputs plus 

the bias and applying the sigmoid function to the result

𝑦 = 𝜎(𝑤1𝑥1 +𝑤2𝑥2 +𝑤3𝑥3 + 𝑏)

where 𝜎 is the sigmoid function
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The Sigmoid Function

• The sigmoid function is a continuous function that approximates a 

step function

𝜎 𝑧 =
1

1 + 𝑒−𝑧
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Multilayer Neural Networks

20

from Neural Networks and Deep Learning by Michael Nielson  



Multilayer Neural Networks
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from Neural Networks and Deep Learning by Michael Nielson  

NO intralayer connections



Neural Network for Digit Classification
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from Neural Networks and Deep Learning by Michael Nielson  



Neural Network for Digit Classification
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from Neural Networks and Deep Learning by Michael Nielson  

Why 10 
instead of 4?



Training Neural Networks

• To do the learning, we first need to define a cost function to minimize

𝐶 𝑤, 𝑏 =
1

2𝑀
 

𝑚

𝑦𝑚 − 𝑎(𝑥𝑚, 𝑤, 𝑏) 2

• The data consists of input output pairs (𝑥1, 𝑦1), … , (𝑥𝑀, 𝑦𝑀)

• 𝑎(𝑥, 𝑤, 𝑏) is the output of the neural network for the 𝑚𝑡ℎ sample

• 𝑤 and 𝑏 are the weights an biases
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Gradient of the Cost Function

• The derivative of the cost function is relatively straightforward to 

calculate

𝜕𝐶(𝑤, 𝑏)

𝜕𝑤𝑘
=

1

𝑀
 

𝑚

𝑦𝑚 −
𝜕𝑎(𝑥𝑚, 𝑤, 𝑏)

𝜕𝑤𝑘

– To compute the derivative of 𝑎, use the chain rule and the 

derivative of the sigmoid function

𝑑𝜎(𝑧)

𝑑𝑧
= 𝜎 𝑧 ⋅ (1 − 𝜎 𝑧 )

– This gets complicated quickly with lots of layers of neurons
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Stochastic Gradient Descent

• To make the training more practical, stochastic gradient descent is 

used instead of standard gradient descent

• The idea of stochastic gradient descent is to approximate the 

gradient of a sum by sampling a few indices uniformly at random and 

averaging 

𝛻𝑥  

𝑖=1

𝑛

𝑓𝑖(𝑥) ≈
1

𝐾
 

𝑘=1

𝐾

𝛻𝑥𝑓𝑖𝑘(𝑥)

here, each 𝑖𝑘 is sampled uniformly at random from {1,… , 𝑛}
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