
CS 6347

Lecture 22

Neural Networks

Classification Problems

• We’ve been focusing primarily on two different types of learning

problems

– Classification: given a collection of labelled data for training,

correctly predict the label of unseen/unlabelled data

– Structured prediction

• Many natural machine learning tasks can be formulated as

classification problems

2

Handwritten Digit Recognition

• Given a collection of handwritten digits and

their corresponding labels, we’d like to be

able to correctly classify handwritten digits

– A simple algorithmic technique can

solve this problem with 95% accuracy

• This seems surprising, in fact, state-

of-the-art methods can achieve near

99% accuracy (you’ve probably seen

these in action if you’ve deposited a

check recently)

3

Digits from the MNIST
data set

Neural Networks

• The basis of neural networks was developed in the 1940s -1960s

– The idea was to build mathematical models that might “compute”

in the same way that neurons in the brain do

– As a result, neural networks are biologically inspired, though

many of the algorithms that are used to work with them are not

biologically plausible

4

Neural Networks

• Neural networks consist of a collection of artificial neurons

• There are different types of neuron models that are commonly studied

– The perceptron (one of the first studied)

– The sigmoid neuron (most common)

• A neural network is typically a directed graph consisting of a

collection of neurons (the nodes in the graph), directed edges (each

with an associated weight), and a collection of fixed binary inputs

5

The Perceptron

• A perceptron is an artificial neuron that takes a collection of binary
inputs and produces a binary output

– The output of the perceptron is determined by summing up the
weighted inputs and thresholding the result: if the weighted sum
is larger than the threshold, the output is one (and zero otherwise)

𝑦 =
1 𝑤1𝑥1 +𝑤2𝑥2 +𝑤3𝑥3 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

6

𝑥3

𝑥2

𝑥1

𝑦

The Perceptron

𝑦 =
1 𝑤1𝑥1 +𝑤2𝑥2 +𝑤3𝑥3 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• The weights can be both positive and negative

• Many simple decisions can be modeled using perceptrons

– Example: AND, OR, NOT

7

𝑥3

𝑥2

𝑥1

𝑦

Perceptron for NOT

• Choose 𝑤 = −1, threshold = −.5

• 𝑦 =
1 −𝑥 > −.5
0 −𝑥 ≤ −.5

8

⌐𝑥 𝑦

Perceptron for OR

9

Perceptron for OR

• Choose 𝑤1 = 𝑤2 = 1, threshold = 0

• 𝑦 =
1 𝑥1 + 𝑥2 > 0
0 𝑥1 + 𝑥2 ≤ 0

10

ᴠ𝑥2

𝑥1
𝑦

Perceptron for AND

11

Perceptron for AND

• Choose 𝑤1 = 𝑤2 = 1, threshold = 1.5

• 𝑦 =
1 𝑥1 + 𝑥2 > 1.5
0 𝑥1 + 𝑥2 ≤ 1.5

12

ᴧ𝑥2

𝑥1
𝑦

Perceptron for XOR

13

Perceptron for XOR

• Need more than one perceptron!

• Weights for incoming edges are chosen as before

– Networks of perceptrons can encode any circuit!

14

ᴧ

ᴠ

𝑥2

𝑥1

⌐

ᴧ 𝑦

Perceptrons

• Perceptrons are usually expressed in terms of a collection of input

weights and a bias 𝑏 (which is the negative threshold)

𝑦 =
1 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑏 > 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

15

𝑥3

𝑥2

𝑥1

𝑦

Neural Networks

• Gluing a bunch of perceptrons together gives us a neural network

• In general, neural nets have a collection of binary inputs and a

collection of binary outputs

16

OutputsInputs

Beyond Perceptrons

• Given a collection of input-output pairs, we’d like to learn the weights

of the neural network so that we can correctly predict the ouput of an

unseen input

– We could try learning via gradient descent (e.g., by minimizing the

error)

• This approach doesn’t work so well: small changes in the

weights can cause dramatic changes in the output

• This is a consequence of the discontinuity of the sharp

thresholding

17

The Sigmoid Neuron

• A sigmoid neuron is an artificial neuron that takes a collection of

inputs in the interval [0,1] and produces an output in the interval

[0,1]

– The output is determined by summing up the weighted inputs plus

the bias and applying the sigmoid function to the result

𝑦 = 𝜎(𝑤1𝑥1 +𝑤2𝑥2 +𝑤3𝑥3 + 𝑏)

where 𝜎 is the sigmoid function

18

𝑥3

𝑥2

𝑥1

𝑦

The Sigmoid Function

• The sigmoid function is a continuous function that approximates a

step function

𝜎 𝑧 =
1

1 + 𝑒−𝑧

19

Multilayer Neural Networks

20

from Neural Networks and Deep Learning by Michael Nielson

Multilayer Neural Networks

21

from Neural Networks and Deep Learning by Michael Nielson

NO intralayer connections

Neural Network for Digit Classification

22

from Neural Networks and Deep Learning by Michael Nielson

Neural Network for Digit Classification

23

from Neural Networks and Deep Learning by Michael Nielson

Why 10
instead of 4?

Training Neural Networks

• To do the learning, we first need to define a cost function to minimize

𝐶 𝑤, 𝑏 =
1

2𝑀

𝑚

𝑦𝑚 − 𝑎(𝑥𝑚, 𝑤, 𝑏) 2

• The data consists of input output pairs (𝑥1, 𝑦1), … , (𝑥𝑀, 𝑦𝑀)

• 𝑎(𝑥, 𝑤, 𝑏) is the output of the neural network for the 𝑚𝑡ℎ sample

• 𝑤 and 𝑏 are the weights an biases

24

Gradient of the Cost Function

• The derivative of the cost function is relatively straightforward to

calculate

𝜕𝐶(𝑤, 𝑏)

𝜕𝑤𝑘
=

1

𝑀

𝑚

𝑦𝑚 −
𝜕𝑎(𝑥𝑚, 𝑤, 𝑏)

𝜕𝑤𝑘

– To compute the derivative of 𝑎, use the chain rule and the

derivative of the sigmoid function

𝑑𝜎(𝑧)

𝑑𝑧
= 𝜎 𝑧 ⋅ (1 − 𝜎 𝑧)

– This gets complicated quickly with lots of layers of neurons

25

Stochastic Gradient Descent

• To make the training more practical, stochastic gradient descent is

used instead of standard gradient descent

• The idea of stochastic gradient descent is to approximate the

gradient of a sum by sampling a few indices uniformly at random and

averaging

𝛻𝑥

𝑖=1

𝑛

𝑓𝑖(𝑥) ≈
1

𝐾

𝑘=1

𝐾

𝛻𝑥𝑓𝑖𝑘(𝑥)

here, each 𝑖𝑘 is sampled uniformly at random from {1,… , 𝑛}

26

