
CS 6347

Lecture 23

Neural Networks
Backpropagation

Restricted Boltzmann Machines

The Sigmoid Neuron

• A sigmoid neuron is an artificial neuron that takes a collection of

inputs in the interval [0,1] and produces an output in the interval

[0,1]

– The output is determined by summing up the weighted inputs plus

the bias and applying the sigmoid function to the result

𝑦 = 𝜎(𝑤1𝑥1 +𝑤2𝑥2 +𝑤3𝑥3 + 𝑏)

where 𝜎 is the sigmoid function

2

𝑥3

𝑥2

𝑥1

𝑦

The Sigmoid Function

• The sigmoid function is a continuous function that approximates a

step function

𝜎 𝑧 =
1

1 + 𝑒−𝑧

3

Multilayer Neural Networks

4

from Neural Networks and Deep Learning by Michael Nielson

Multilayer Neural Networks

5

from Neural Networks and Deep Learning by Michael Nielson

NO intralayer connections

Training Neural Networks

• To do the learning, we first need to define a cost function to minimize

𝐶 𝑤, 𝑏 =
1

2𝑀

𝑚

𝑦𝑚 − 𝑎(𝑥𝑚, 𝑤, 𝑏) 2

• The data consists of input output pairs (𝑥1, 𝑦1), … , (𝑥𝑀, 𝑦𝑀)

• 𝑎(𝑥, 𝑤, 𝑏) is the output of the neural network for the 𝑚𝑡ℎ sample

• 𝑤 and 𝑏 are the weights an biases

6

Gradient of the Cost Function

• The derivative of the cost function is relatively straightforward to

calculate

𝜕𝐶(𝑤, 𝑏)

𝜕𝑤𝑘
=
1

𝑀

𝑚

𝑦𝑚 −
𝜕𝑎(𝑥𝑚, 𝑤, 𝑏)

𝜕𝑤𝑘

– To compute the derivative of 𝑎, use the chain rule and the

derivative of the sigmoid function

𝑑𝜎(𝑧)

𝑑𝑧
= 𝜎 𝑧 ⋅ (1 − 𝜎 𝑧)

– This gets complicated quickly with lots of layers of neurons

7

Stochastic Gradient Descent

• To make the training more practical, stochastic gradient descent is

used instead of standard gradient descent

• The idea of stochastic gradient descent is to approximate the

gradient of a sum by sampling a few indices uniformly at random and

averaging

𝛻𝑥

𝑖=1

𝑛

𝑓𝑖(𝑥) ≈
1

𝐾

𝑘=1

𝐾

𝛻𝑥𝑓𝑖𝑘(𝑥)

here, each 𝑖𝑘 is sampled uniformly at random from {1,… , 𝑛}

8

Computing the Gradient

• We’ll compute the gradient for a single sample

𝐶 𝑤, 𝑏 = 𝑦 − 𝑎(𝑥, 𝑤, 𝑏) 2

• Some definitions:

– 𝐿 is the number of layers

– 𝑎𝑗
𝑙 is the output of the 𝑗𝑡ℎ neuron on the 𝑙𝑡ℎ layer

– 𝑧𝑗
𝑙 is the input of the 𝑗𝑡ℎ neuron on the 𝑙𝑡ℎ layer

𝑧𝑗
𝑙 =

𝑘

𝑤𝑗𝑘
𝑙 𝑎𝑘
𝑙−1 + 𝑏𝑗

𝑙

– 𝛿𝑗
𝑙 is defined to be

𝜕C

𝜕𝑧𝑗
𝑙

9

Computing the Gradient

For the output layer, we have the following partial derivative

𝜕C

𝜕𝑧𝑗
𝐿 = − 𝑦𝑗 − 𝑎𝑗

𝐿
𝜕𝑎𝑗
𝐿

𝜕𝑧𝑗
𝐿

= − 𝑦𝑗 − 𝑎𝑗
𝐿
𝜕𝜎 𝑧𝑗

𝐿

𝜕𝑧𝑗
𝐿

= − 𝑦𝑗 − 𝑎𝑗
𝐿 𝜎 𝑧𝑗

𝐿 1 − 𝜎 𝑧𝑗
𝐿

• For simplicity, we will denote the vector of all such partials for each

node in the 𝑙𝑡ℎ layer as 𝛿𝑙

10

Computing the Gradient

For the 𝐿 − 1 layer, we have the following partial derivative

𝜕C

𝜕𝑧𝑘
𝐿−1 =

𝑗

𝑎𝑗
𝐿 − 𝑦𝑗

𝜕𝑎𝑗
𝐿

𝜕𝑧𝑘
𝐿−1

=

𝑗

𝑎𝑗
𝐿 − 𝑦𝑗

𝜕𝜎 𝑧𝑗
𝐿

𝜕𝑧𝑘
𝐿−1

=

𝑗

𝑎𝑗
𝐿 − 𝑦𝑗 𝜎 𝑧𝑗

𝐿 1 − 𝜎 𝑧𝑗
𝐿
𝜕𝑧𝑗
𝐿

𝜕𝑧𝑘
𝐿−1

=

𝑗

𝑎𝑗
𝐿 − 𝑦𝑗 𝜎 𝑧𝑗

𝐿 1 − 𝜎 𝑧𝑗
𝐿
𝜕 𝑘′𝑤𝑗𝑘′

𝐿 𝑎𝑘′
𝐿−1 + 𝑏𝑗

𝐿

𝜕𝑧𝑘
𝐿−1

=

𝑗

𝑎𝑗
𝐿 − 𝑦𝑗 𝜎 𝑧𝑗

𝐿 1 − 𝜎 𝑧𝑗
𝐿 𝜎 𝑧𝑘

𝐿−1 1 − 𝜎 𝑧𝑘
𝐿−1 𝑤𝑗𝑘

𝐿

= (𝛿𝐿)𝑇𝑤∗𝑘
𝐿 1 − 𝜎 𝑧𝑘

𝐿−1 𝜎 𝑧𝑘
𝐿−1

11

Computing the Gradient

• We can think of 𝑤𝑙 as a matrix

• This allows us to write

𝛿𝐿−1 = (𝛿𝐿)𝑇𝑤𝐿 1 − 𝜎 𝑧𝐿−1 𝜎 𝑧𝐿−1

where 𝜎 𝑧𝐿−1 is the vector whose 𝑘𝑡ℎ component is 𝜎 𝑧𝑘
𝐿−1

• Applying the same strategy, for 𝑙 < 𝐿

𝛿𝑙 = (𝛿𝑙+1)𝑇𝑤𝑙+1 1 − 𝜎 𝑧𝑙 𝜎 𝑧𝑙

12

Computing the Gradient

• Now, for the partial derivatives that we care about

𝜕𝐶

𝜕𝑏𝑗
𝑙 =
𝜕𝐶

𝜕𝑧𝑗
𝑙 ⋅
𝜕𝑧𝑗
𝑙

𝜕𝑏𝑗
𝑙 = 𝛿𝑗

𝑙

𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙 =
𝜕𝐶

𝜕𝑧𝑗
𝑙 ⋅
𝜕𝑧𝑗
𝑙

𝜕𝑤𝑗𝑘
𝑙 = 𝛿𝑗

𝑙𝑎𝑘
𝑙−1

• We can compute these derivatives one layer at a time!

13

Backpropagation

• Compute the inputs/outputs for each layer by starting at the input layer and

applying the sigmoid functions

• Compute 𝛿𝐿 and the output layer

• Starting from the output layer and working backwards, compute

𝛿𝐿−1, 𝛿𝐿−2, …

• Compute the gradient of the objective function

𝜕𝐶

𝜕𝑏𝑗
𝑙 = 𝛿𝑗

𝑙

𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙 = 𝛿𝑗

𝑙𝑎𝑘
𝑙−1

14

Backpropagation

• Many ways to improve this approach

– Use a regularizer! (better generalization)

– Try other cost functions

– Initialize the weights of the network more cleverly

• Random initializations are likely to be far from optimal

– etc.

• The algorithm can have numerical difficulties if there are a large

number of layers

15

Restricted Boltzmann Machines

• A special kind of undirected graphical model

– Potentials are parameterized as they are in the Ising model

– Consists of a bipartite graph in which one side of the partition is

observed and the other side of the partition is unobserved

• A single “hidden layer” with no edges between hidden

variables

– Can be made to perform well for digit classification

16

Restricted Boltzmann Machines

• Because of the properties of MRFs, the hidden variables are
conditionally independent given the observed variables

– We can do learning in these networks by exploiting this fact

– Instead of the EM algorithm, we can employ sampling based
techniques to approximate the gradient of the log-likelihoof

• A special type of approximate sampling where we only draw a
few samples is referred to as contrastive divergence

– Start the Gibbs sampler with one of the observed samples
𝑥𝑚, use it to sample the hidden variables, then use the
hidden variables to generate a new 𝑥

17

