

CS 6347

Lecture 23

Neural Networks

Backpropagation

Restricted Boltzmann Machines

The Sigmoid Neuron

- A sigmoid neuron is an artificial neuron that takes a collection of inputs in the interval [0,1] and produces an output in the interval [0,1]
 - The output is determined by summing up the weighted inputs plus the bias and applying the sigmoid function to the result

where σ is the sigmoid function

The Sigmoid Function

The sigmoid function is a continuous function that approximates a step function

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Multilayer Neural Networks

from Neural Networks and Deep Learning by Michael Nielson

Multilayer Neural Networks

NO intralayer connections

from Neural Networks and Deep Learning by Michael Nielson

Training Neural Networks

To do the learning, we first need to define a cost function to minimize

$$C(w,b) = \frac{1}{2M} \sum_{m} ||y^{m} - a(x^{m}, w, b)||^{2}$$

- The data consists of input output pairs $(x^1, y^1), ..., (x^M, y^M)$
- a(x, w, b) is the output of the neural network for the m^{th} sample
- w and b are the weights an biases

Gradient of the Cost Function

 The derivative of the cost function is relatively straightforward to calculate

$$\frac{\partial C(w,b)}{\partial w_k} = \frac{1}{M} \sum_{m} \left[y^m - \frac{\partial a(x^m, w, b)}{\partial w_k} \right]$$

— To compute the derivative of a, use the chain rule and the derivative of the sigmoid function

$$\frac{d\sigma(z)}{dz} = \sigma(z) \cdot (1 - \sigma(z))$$

This gets complicated quickly with lots of layers of neurons

Stochastic Gradient Descent

- To make the training more practical, stochastic gradient descent is used instead of standard gradient descent
- The idea of stochastic gradient descent is to approximate the gradient of a sum by sampling a few indices uniformly at random and averaging

$$\nabla_{x} \sum_{i=1}^{n} f_{i}(x) \approx \frac{1}{K} \sum_{k=1}^{K} \nabla_{x} f_{i^{k}}(x)$$

here, each i^k is sampled uniformly at random from $\{1, ..., n\}$

We'll compute the gradient for a single sample

$$C(w,b) = ||y - a(x, w, b)||^2$$

- Some definitions:
 - -L is the number of layers
 - $-a_j^l$ is the output of the j^{th} neuron on the l^{th} layer
 - $-z_j^l$ is the input of the j^{th} neuron on the l^{th} layer

$$z_{j}^{l} = \sum_{k} w_{jk}^{l} a_{k}^{l-1} + b_{j}^{l}$$

 $-\delta_j^l$ is defined to be $\frac{\partial C}{\partial z_j^l}$

For the output layer, we have the following partial derivative

$$\frac{\partial C}{\partial z_j^L} = -(y_j - a_j^L) \frac{\partial a_j^L}{\partial z_j^L}$$

$$= -(y_j - a_j^L) \frac{\partial \sigma(z_j^L)}{\partial z_j^L}$$

$$= -(y_j - a_j^L) \sigma(z_j^L) \left(1 - \sigma(z_j^L)\right)$$

• For simplicity, we will denote the vector of all such partials for each node in the l^{th} layer as δ^l

For the L-1 layer, we have the following partial derivative

$$\frac{\partial C}{\partial z_{k}^{L-1}} = \sum_{j} (a_{j}^{L} - y_{j}) \frac{\partial a_{j}^{L}}{\partial z_{k}^{L-1}}
= \sum_{j} (a_{j}^{L} - y_{j}) \frac{\partial \sigma(z_{j}^{L})}{\partial z_{k}^{L-1}}
= \sum_{j} (a_{j}^{L} - y_{j}) \sigma(z_{j}^{L}) \left(1 - \sigma(z_{j}^{L})\right) \frac{\partial z_{j}^{L}}{\partial z_{k}^{L-1}}
= \sum_{j} (a_{j}^{L} - y_{j}) \sigma(z_{j}^{L}) \left(1 - \sigma(z_{j}^{L})\right) \frac{\partial \sum_{k'} w_{jk'}^{L} a_{k'}^{L-1} + b_{j}^{L}}{\partial z_{k}^{L-1}}
= \sum_{j} (a_{j}^{L} - y_{j}) \sigma(z_{j}^{L}) \left(1 - \sigma(z_{j}^{L})\right) \sigma(z_{k}^{L-1}) \left(1 - \sigma(z_{k}^{L-1})\right) w_{jk}^{L}
= \left((\delta^{L})^{T} w_{*k}^{L}\right) \left(1 - \sigma(z_{k}^{L-1})\right) \sigma(z_{k}^{L-1})$$

- We can think of w^l as a matrix
- This allows us to write

$$\delta^{L-1} = ((\delta^L)^T w^L) (1 - \sigma(z^{L-1})) \sigma(z^{L-1})$$

where $\sigma(z^{L-1})$ is the vector whose k^{th} component is $\sigma(z_k^{L-1})$

• Applying the same strategy, for l < L

$$\delta^{l} = \left((\delta^{l+1})^{T} w^{l+1} \right) \left(1 - \sigma(z^{l}) \right) \sigma(z^{l})$$

Now, for the partial derivatives that we care about

$$\frac{\partial C}{\partial b_j^l} = \frac{\partial C}{\partial z_j^l} \cdot \frac{\partial z_j^l}{\partial b_j^l} = \delta_j^l$$

$$\frac{\partial C}{\partial w_{jk}^l} = \frac{\partial C}{\partial z_j^l} \cdot \frac{\partial z_j^l}{\partial w_{jk}^l} = \delta_j^l a_k^{l-1}$$

We can compute these derivatives one layer at a time!

Backpropagation

- Compute the inputs/outputs for each layer by starting at the input layer and applying the sigmoid functions
- Compute δ^L and the output layer
- Starting from the output layer and working backwards, compute δ^{L-1} , δ^{L-2} , ...
- Compute the gradient of the objective function

$$\frac{\partial C}{\partial b_j^l} = \delta_j^l$$

$$\frac{\partial C}{\partial w_{ik}^l} = \delta_j^l a_k^{l-1}$$

Backpropagation

- Many ways to improve this approach
 - Use a regularizer! (better generalization)
 - Try other cost functions
 - Initialize the weights of the network more cleverly
 - Random initializations are likely to be far from optimal
 - etc.
- The algorithm can have numerical difficulties if there are a large number of layers

Restricted Boltzmann Machines

- A special kind of undirected graphical model
 - Potentials are parameterized as they are in the Ising model
 - Consists of a bipartite graph in which one side of the partition is observed and the other side of the partition is unobserved
 - A single "hidden layer" with no edges between hidden variables
 - Can be made to perform well for digit classification

Restricted Boltzmann Machines

- Because of the properties of MRFs, the hidden variables are conditionally independent given the observed variables
 - We can do learning in these networks by exploiting this fact
 - Instead of the EM algorithm, we can employ sampling based techniques to approximate the gradient of the log-likelihoof
 - A special type of approximate sampling where we only draw a few samples is referred to as contrastive divergence
 - Start the Gibbs sampler with one of the observed samples x^m , use it to sample the hidden variables, then use the hidden variables to generate a new x

