CS 6347

Lecture 23

Neural Networks
Backpropagation
Restricted Boltzmann Machines

The Sigmoid Neuron

* Asigmoid neuron is an artificial neuron that takes a collection of
inputs in the interval [0,1] and produces an output in the interval
[0,1]

— The output is determined by summing up the weighted inputs plus
the bias and applying the sigmoid function to the result

X

3

Yy =0(Wixy +wyxy +w3x3 + b)

where o is the sigmoid function

The Sigmoid Function

» The sigmoid function is a continuous function that approximates a
step function

o(z) =

1+e % /7’

—10 —5 5 10

Multilayer Neural Networks
[——

input layer <

from Neural Networks and Deep Learning by Michael Nielson

4

Multilayer Neural Networks
[——

NO intralayer connections

input layer <

from Neural Networks and Deep Learning by Michael Nielson

5

Training Neural Networks

To do the learning, we first need to define a cost function to minimize

1
Cw,b) =5 > lly™ = a(x™ w, b1
m

The data consists of input output pairs (xl, yl), e (xM, yM)

h

 a(x,w,b) is the output of the neural network for the m*" sample

w and b are the weights an biases

Gradient of the Cost Function

* The derivative of the cost function is relatively straightforward to
calculate

dC(w, b) aa(x w, b)
2"

aWk

— To compute the derivative of a, use the chain rule and the
derivative of the sigmoid function

do(z)
dz

=0(z)-(1—-0a(2))
— This gets complicated quickly with lots of layers of neurons

7

Stochastic Gradient Descent

* To make the training more practical, stochastic gradient descent is
used instead of standard gradient descent

* The idea of stochastic gradient descent is to approximate the
gradient of a sum by sampling a few indices uniformly at random and

averaging
n 1 K
7,) fi) =7) Vef k()
i=1 k=1

here, each i is sampled uniformly at random from {1,..,n}

Computing the Gradient
I
* We'll compute the gradient for a single sample
C(w,b) = |ly — a(x,w,b)||?

e Some definitions:

— L is the number of layers

— aj is the output of the j*" neuron on the I*" layer

— zj isthe input of the j*" neuron on the I*" layer
| _ L 11, pl
Zj = z ijak + b]
k

. _ aC
— 0j is defined to be a_z]l.

Computing the Gradient

For the output layer, we have the following partial derivative

oc , aajL
a_ZjL = —(y,- — 4) a_ZjL
60(2})

— _(y]'_a]L) aZjL

=~ —) o(z) (1~ o(z})

* For simplicity, we will denote the vector of all such partials for each
node in the [" layer as &

UT D

10

Computing the Gradient

Forthe L — 1 layer, we have the foIIowing partial derivative

azk z(“ =) azk
GU(ZL)
=Z(aj -) 9751
=Z(- y; O'(ZL) (1 O'(ZL)

Z<a -y) o) (1-o(2})

z(a —vy;)o(z) (1 O'(ZL))O'(ZILC' H (1 o(zk~ 1))
(<6L>T L) (1= o(zk™)) o(zk)

6zk
L—1

)P
) Loagt+ bi

azk

11

Computing the Gradient

I
* We can think of w' as a matrix
* This allows us to write
6L—1 — ((5L)TWL)(1 _ O.(ZL—l))O.(ZL—l)
where o(zL~1) is the vector whose k*"* componentis o(z; ')

* Applying the same strategy, for < L
sl = ((5l+1)TWl+1) (1 _ O.(Zl)) o(z)

12

Computing the Gradient

* Now, for the partial derivatives that we care about

ac ac 0z
ol a1 apl 9
ob! 9z' ab!

oc aC 0z

I — Al 3.l
dwj, 0z; 0wy

_ sl ol-1
= 0jay

* We can compute these derivatives one layer at a time!

13

Backpropagation

e Compute the inputs/outputs for each layer by starting at the input layer and
applying the sigmoid functions

« Compute 5% and the output layer

 Starting from the output layer and working backwards, compute
oL=1 6872, ..

e Compute the gradient of the objective function
aC

Y
l]
ob!
dC
— ol _1-
an 8] ak 1

14

Backpropagation

* Many ways to improve this approach
— Use a regularizer! (better generalization)
— Try other cost functions
— Initialize the weights of the network more cleverly
* Random initializations are likely to be far from optimal
— etc.

* The algorithm can have numerical difficulties if there are a large
number of layers

15

Restricted Boltzmann Machines
_

» Aspecial kind of undirected graphical model
— Potentials are parameterized as they are in the Ising model

— Consists of a bipartite graph in which one side of the partition is
observed and the other side of the partition is unobserved

* Asingle “hidden layer” with no edges between hidden
variables

— Can be made to perform well for digit classification

16

Restricted Boltzmann Machines
_

* Because of the properties of MRFs, the hidden variables are
conditionally independent given the observed variables

— We can do learning in these networks by exploiting this fact

— Instead of the EM algorithm, we can employ sampling based
techniques to approximate the gradient of the log-likelihoof

A special type of approximate sampling where we only draw a
few samples is referred to as contrastive divergence

— Start the Gibbs sampler with one of the observed samples
x™ use it to sample the hidden variables, then use the
hidden variables to generate a new x

17

