CS 6347

Lecture 23

Neural Networks

Backpropagation
Restricted Boltzmann Machines

The Sigmoid Neuron

- A sigmoid neuron is an artificial neuron that takes a collection of inputs in the interval $[0,1]$ and produces an output in the interval [0,1]
- The output is determined by summing up the weighted inputs plus the bias and applying the sigmoid function to the result

$$
y=\sigma\left(w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{3}+b\right)
$$

where σ is the sigmoid function

The Sigmoid Function

- The sigmoid function is a continuous function that approximates a step function

$$
\sigma(z)=\frac{1}{1+e^{-z}}
$$

Multilayer Neural Networks

from Neural Networks and Deep Learning by Michael Nielson

Multilayer Neural Networks

NO intralayer connections

from Neural Networks and Deep Learning by Michael Nielson

Training Neural Networks

- To do the learning, we first need to define a cost function to minimize

$$
C(w, b)=\frac{1}{2 M} \sum_{m}\left\|y^{m}-a\left(x^{m}, w, b\right)\right\|^{2}
$$

- The data consists of input output pairs $\left(x^{1}, y^{1}\right), \ldots,\left(x^{M}, y^{M}\right)$
- $a(x, w, b)$ is the output of the neural network for the $m^{t h}$ sample
- $\quad w$ and b are the weights an biases

Gradient of the Cost Function

- The derivative of the cost function is relatively straightforward to calculate

$$
\frac{\partial C(w, b)}{\partial w_{k}}=\frac{1}{M} \sum_{m}\left[y^{m}-\frac{\partial a\left(x^{m}, w, b\right)}{\partial w_{k}}\right]
$$

- To compute the derivative of a, use the chain rule and the derivative of the sigmoid function

$$
\frac{d \sigma(z)}{d z}=\sigma(z) \cdot(1-\sigma(z))
$$

- This gets complicated quickly with lots of layers of neurons

Stochastic Gradient Descent

- To make the training more practical, stochastic gradient descent is used instead of standard gradient descent
- The idea of stochastic gradient descent is to approximate the gradient of a sum by sampling a few indices uniformly at random and averaging

$$
\nabla_{x} \sum_{i=1}^{n} f_{i}(x) \approx \frac{1}{K} \sum_{k=1}^{K} \nabla_{x} f_{i^{k}}(x)
$$

here, each i^{k} is sampled uniformly at random from $\{1, \ldots, n\}$

Computing the Gradient

- We'll compute the gradient for a single sample

$$
C(w, b)=\|y-a(x, w, b)\|^{2}
$$

- Some definitions:
- L is the number of layers
$-a_{j}^{l}$ is the output of the $j^{t h}$ neuron on the $l^{\text {th }}$ layer
$-z_{j}^{l}$ is the input of the $j^{t h}$ neuron on the $l^{t h}$ layer

$$
z_{j}^{l}=\sum_{k} w_{j k}^{l} a_{k}^{l-1}+b_{j}^{l}
$$

$-\delta_{j}^{l}$ is defined to be $\frac{\partial \mathrm{C}}{\partial z_{j}^{l}}$

Computing the Gradient

For the output layer, we have the following partial derivative

$$
\begin{aligned}
\frac{\partial \mathrm{C}}{\partial z_{j}^{L}} & =-\left(y_{j}-a_{j}^{L}\right) \frac{\partial a_{j}^{L}}{\partial z_{j}^{L}} \\
& =-\left(y_{j}-a_{j}^{L}\right) \frac{\partial \sigma\left(z_{j}^{L}\right)}{\partial z_{j}^{L}} \\
& =-\left(y_{j}-a_{j}^{L}\right) \sigma\left(z_{j}^{L}\right)\left(1-\sigma\left(z_{j}^{L}\right)\right)
\end{aligned}
$$

- For simplicity, we will denote the vector of all such partials for each node in the $l^{\text {th }}$ layer as δ^{l}

Computing the Gradient

For the $L-1$ layer, we have the following partial derivative

$$
\begin{aligned}
\frac{\partial \mathrm{C}}{\partial z_{k}^{L-1}} & =\sum_{j}\left(a_{j}^{L}-y_{j}\right) \frac{\partial a_{j}^{L}}{\partial z_{k}^{L-1}} \\
& =\sum_{j}\left(a_{j}^{L}-y_{j}\right) \frac{\partial \sigma\left(z_{j}^{L}\right)}{\partial z_{k}^{L-1}} \\
& =\sum_{j}\left(a_{j}^{L}-y_{j}\right) \sigma\left(z_{j}^{L}\right)\left(1-\sigma\left(z_{j}^{L}\right)\right) \frac{\partial z_{j}^{L}}{\partial z_{k}^{L-1}} \\
& =\sum_{j}\left(a_{j}^{L}-y_{j}\right) \sigma\left(z_{j}^{L}\right)\left(1-\sigma\left(z_{j}^{L}\right)\right) \frac{\partial \sum_{k^{\prime}} w_{j k^{\prime}}^{L} a_{k^{\prime}}^{L-1}+b_{j}^{L}}{\partial z_{k}^{L-1}} \\
& =\sum_{j}\left(a_{j}^{L}-y_{j}\right) \sigma\left(z_{j}^{L}\right)\left(1-\sigma\left(z_{j}^{L}\right)\right) \sigma\left(z_{k}^{L-1}\right)\left(1-\sigma\left(z_{k}^{L-1}\right)\right) w_{j k}^{L} \\
& =\left(\left(\delta^{L}\right)^{T} w_{* k}^{L}\right)\left(1-\sigma\left(z_{k}^{L-1}\right)\right) \sigma\left(z_{k}^{L-1}\right)
\end{aligned}
$$

Computing the Gradient

- We can think of w^{l} as a matrix
- This allows us to write

$$
\delta^{L-1}=\left(\left(\delta^{L}\right)^{T} w^{L}\right)\left(1-\sigma\left(z^{L-1}\right)\right) \sigma\left(z^{L-1}\right)
$$

where $\sigma\left(z^{L-1}\right)$ is the vector whose $k^{t h}$ component is $\sigma\left(z_{k}^{L-1}\right)$

- Applying the same strategy, for $l<L$

$$
\delta^{l}=\left(\left(\delta^{l+1}\right)^{T} w^{l+1}\right)\left(1-\sigma\left(z^{l}\right)\right) \sigma\left(z^{l}\right)
$$

Computing the Gradient

- Now, for the partial derivatives that we care about

$$
\begin{gathered}
\frac{\partial C}{\partial b_{j}^{l}}=\frac{\partial C}{\partial z_{j}^{l}} \cdot \frac{\partial z_{j}^{l}}{\partial b_{j}^{l}}=\delta_{j}^{l} \\
\frac{\partial C}{\partial w_{j k}^{l}}=\frac{\partial C}{\partial z_{j}^{l}} \cdot \frac{\partial z_{j}^{l}}{\partial w_{j k}^{l}}=\delta_{j}^{l} a_{k}^{l-1}
\end{gathered}
$$

- We can compute these derivatives one layer at a time!

Backpropagation

- Compute the inputs/outputs for each layer by starting at the input layer and applying the sigmoid functions
- Compute δ^{L} and the output layer
- Starting from the output layer and working backwards, compute $\delta^{L-1}, \delta^{L-2}, \ldots$
- Compute the gradient of the objective function

$$
\begin{gathered}
\frac{\partial C}{\partial b_{j}^{l}}=\delta_{j}^{l} \\
\frac{\partial C}{\partial w_{j k}^{l}}=\delta_{j}^{l} a_{k}^{l-1}
\end{gathered}
$$

Backpropagation

- Many ways to improve this approach
- Use a regularizer! (better generalization)
- Try other cost functions
- Initialize the weights of the network more cleverly
- Random initializations are likely to be far from optimal
- etc.
- The algorithm can have numerical difficulties if there are a large number of layers

Restricted Boltzmann Machines

- A special kind of undirected graphical model
- Potentials are parameterized as they are in the Ising model
- Consists of a bipartite graph in which one side of the partition is observed and the other side of the partition is unobserved
- A single "hidden layer" with no edges between hidden variables
- Can be made to perform well for digit classification

Restricted Boltzmann Machines

- Because of the properties of MRFs, the hidden variables are conditionally independent given the observed variables
- We can do learning in these networks by exploiting this fact
- Instead of the EM algorithm, we can employ sampling based techniques to approximate the gradient of the log-likelihoof
- A special type of approximate sampling where we only draw a few samples is referred to as contrastive divergence
- Start the Gibbs sampler with one of the observed samples x^{m}, use it to sample the hidden variables, then use the hidden variables to generate a new x

