CS 6347

Lecture 2

Probability Review



Discrete Probability

« Sample space specifies the set of possible outcomes

— Forexample, 2 = {H, T} would be the set of possible
outcomes of a coin flip

« Eachelement w € Q is associated with a number p(w) € [0,1]

called a probability
z p(w) =1

wE)

— Forexample, a biased coin might have p(H) = .6 and p(T) =
A4




Discrete Probability

* Aneventis asubset of the sample space

— Let) = {1, 2,3,4,5, 6} be the 6 possible outcomes of a dice
role

— A ={1,5,6} € Qwould be the event that the dice roll comes
up as a one, five, or six

* The probability of an event is just the sum of all of the outcomes that
it contains

- p(4) =p(1) +p(5) + p(6)




Independence
I

* Two events A and B are independent if
p(ANnB) =p(A)P(B)
Let's suppose that we have a fairdie: p(1) = ... =p(6) =1/6

IfA={1,2,5}and B = {3,4, 6} are A and B indpendent?




Independence
I

* Two events A and B are independent if
p(ANnB) =p(A)P(B)
Let's suppose that we have a fairdie: p(1) = ... =p(6) =1/6

IfA={1,2,5}and B = {3,4, 6} are A and B indpendent?

No/!
p(ANB) =0+ -




Independence
-

 Now, suppose that Q@ = {(1,1), (1,2), ..., (6,6)} is the set of all
possible rolls of two unbiased dice

e LetA ={(1,1),(1,2),(1,3), ..., (1,6)} be the event that the first
dieisaoneandlet B = {(1,6), (2,6), ..., (6,6)} be the event that
the second die is a six

 Are A and B independent?
A




Independence
-

 Now, suppose that Q@ = {(1,1), (1,2), ..., (6,6)} is the set of all
possible rolls of two unbiased dice

e LetA ={(1,1),(1,2),(1,3), ..., (1,6)} be the event that the first
dieisaoneandlet B = {(1,6), (2,6), ..., (6,6)} be the event that
the second die is a six

 Are A and B independent?
A




Conditional Probability

* The conditional probability of an event A given an event B
with p(B) > 0 is defined to be

* This is the probability of the event A N B over the sample space
Q' =B

* Some properties:

— ZwEBp(wlB) =1

— If A and B are independent, then p(A4|B) = p(A)
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Simple Example
I ——

Yes A 3
Yes F 5
No A .15
No F .05




Chain Rule

p(AnB) =p(A)p(B|A)

p(ANBNC)=p(AnB)p(C|ANB)
= p(A)p(B|A)p(C|AN B)
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Ai) =p(A)p(43|A1) . p(Ax|A; NN Ap_q)
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Conditional Independence
e

* Two events A and B are independent if learning something about B
tells you nothing about A (and vice versa)

* Two events A and B are conditionally independent given C if
p(AN B|C) = p(4]|C)p(B|C)

e Thisis equivalent to
p(A|B N C) =p(A|C)

— Thatis, given C, information about B does tells you nothing about
A (and vice versa)
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Conditional Independence
e

 LetQ ={(H,H),(H,T),(T,H), (T, T)} be the outcomes resulting
from tossing two different fair coins

* Let A be the event that the first coin is heads
 Let B be the event that the second coin is heads

 Let C bethe even that both coins are heads or both are tails

A and B are independent, but A and B are not independent given C
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Discrete Random Variables
_

* Adiscrete random variable, X, is a function from the state space ()
into a discrete space D

— Foreachx € D,

p(X =x) =p({w € Q: X(w) = x})
is the probability that X takes the value x
— p(X) defines a probability distribution
* dxepPX =x) =1

* Random variables partition the state space into disjoint events
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Example: Pair of Dice
-

* Let () be the set of all possible outcomes of rolling a pair of dice

* Letp be the uniform probability distribution over all possible
outcomes in ()

* Let X(w) be equal to the sum of the value showing on the pair of dice
in the outcome w

-pX=2)="?

-p(X=8)="?
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Example: Pair of Dice
-

* Let () be the set of all possible outcomes of rolling a pair of dice

* Letp be the uniform probability distribution over all possible
outcomes in ()

* Let X(w) be equal to the sum of the value showing on the pair of dice
in the outcome w

1
-p(X =2) =

-p(X =8) =7
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Example: Pair of Dice
-

* Let () be the set of all possible outcomes of rolling a pair of dice

* Letp be the uniform probability distribution over all possible
outcomes in ()

* Let X(w) be equal to the sum of the value showing on the pair of dice

in the outcome w
1
-p(X =2) =
5
- pX =8) =~
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Discrete Random Variables
_

* We can have vectors of random variables as well
X(w) = [X1(w), ..., Xp(w)]
* The jointdistributionis p(X; = x4, ..., X;; = x,,) is
pX1=x1 NN Xy =xp)
typically written as
P(X1, ) Xp)

* Because X; = x; is an event, all of the same rules - independence,
conditioning, chain rule, etc. - still apply
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Discrete Random Variables
_

* Two random variables X; and X, are independent if
p(X1 = x1,X; = x3) = p(X; = x)p(X2 = x3)
for all values of x; and x,

 Similar definition for conditional independence

* The conditional distribution of X; given X, = x, is

p(XerZ — Xz)
p(X; = x3)

this means that this relationship holds for all choices of x;

p(X1lXy = x3) =
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Example: Independent Sets

* Let () be the set of all vertex subsetsina graph ¢ = (V, E)

* Letp be the uniform probability distribution over all independent sets
in ()

* Defineforeachv € V,

X,(w) =1, if v € w and
X,(w) =0, otherwise

* p(X, = 1) isthe fraction of all independent sets in G containing v
* p(xq,...,%x,) # 0ifand only if the x’s define an independent set

UT D
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Example: Independent Sets

Consider the graph on the left, with the
sample space and probabilities from the
last slide

p(Xl — 1,X2 - O,X3 - O,X4_ — 1) =7
p(Xl — O,XZ — 1,X3 — 1,X4_ — O) =7

p(X;=1)=7?
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Example: Independent Sets

 How large of a table is needed to store the joint distribution p (X}, )
fora givengraph G = (V,E)?
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Example: Independent Sets

 How large of a table is needed to store the joint distribution p (X} )
fora givengraph G = (V,E)?

21VI.1
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Structured Distributions

* Consider a general joint distribution p (X, ..., X,,) over binary
valued random variables

* IfX,, ..., X,, areall independent random variables, then
p(xq, ..o, xy) = p(x1) ... p(xy)

* How much information is needed to store the joint distribution?
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Structured Distributions
_

* Consider a general joint distribution p (X, ..., X,,) over binary
valued random variables

* IfX,, ..., X,, areall independent random variables, then
p(xq, ..o, xy) = p(x1) ... p(xy)
* How much information is needed to store the joint distribution?

71 numbers

* This model is boring: knowing the value of any one variable tells you
nothing about the others
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Structured Distributions
_

* Consider a general joint distribution p (X, ..., X,,) over binary
valued random variables

* IfXy, ..., X,, are all independent given a different random variable Y/,
then

p(x1, oy X |y) = p(x1|y) . D (20 |y)
and

PV, X1, s X)) = PYIP(X1|Y) .. D (X0 ]Y)

* These models turn out to be surprisingly powerful, despite looking
nearly identical to the previous case!
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Marginal Distributions
e

 Given ajoint distribution p(X4, ..., X,,), the marginal distribution
over the i*"random variable is given by

p;(X; =x;) = 77 7 7 ---zP(X1 = X1, ..., Xy = Xp)

X1 Xy Xi—1 Xi+1 Xn

* In general, marginal distributions are obtained by fixing some subset
of the variables and summing out over the others

— This can be an expensive operation!
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Inference/Prediction
-

» Given fixed values of some subset, E, of the random variables,
compute the conditional probability over the remaining variables, S

p(Xs, Xp = xg)
p(Xg = xg)

p(Xs|Xg = xg) =

* This involves computing the marginal distribution p (X = xr), S0
we refer to this as marginal inference
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Inference/Prediction
-

» Given fixed values of some subset, E, of the random variables,
compute the most likely assignment of the remaining variables, S

argmax p(Xs = xs|Xg = xg)
Xs

e This is called maximum a posteriori (MAP) inference

 We don’t need to do marginal inference to compute the MAP
assignment, why not?
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