CS 6347

Lecture 2

Probability Review

Discrete Probability

- Sample space specifies the set of possible outcomes
- For example, $\Omega=\{\mathrm{H}, \mathrm{T}\}$ would be the set of possible outcomes of a coin flip
- Each element $\omega \in \Omega$ is associated with a number $p(\omega) \in[0,1]$ called a probability

$$
\sum_{\omega \in \Omega} p(\omega)=1
$$

- For example, a biased coin might have $p(H)=.6$ and $p(T)=$. 4

Discrete Probability

- An event is a subset of the sample space
- Let $\Omega=\{1,2,3,4,5,6\}$ be the 6 possible outcomes of a dice role
$-A=\{1,5,6\} \subseteq \Omega$ would be the event that the dice roll comes up as a one, five, or six
- The probability of an event is just the sum of all of the outcomes that it contains

$$
-p(A)=p(1)+p(5)+p(6)
$$

Independence

- Two events A and B are independent if

$$
p(A \cap B)=p(A) P(B)
$$

Let's suppose that we have a fair die: $p(1)=\ldots=p(6)=1 / 6$
If $A=\{1,2,5\}$ and $B=\{3,4,6\}$ are A and B indpendent?

Independence

- Two events A and B are independent if

$$
p(A \cap B)=p(A) P(B)
$$

Let's suppose that we have a fair die: $p(1)=\ldots=p(6)=1 / 6$
If $A=\{1,2,5\}$ and $B=\{3,4,6\}$ are A and B indpendent?

No!

$$
p(A \cap B)=0 \neq \frac{1}{4}
$$

Independence

- Now, suppose that $\Omega=\{(1,1),(1,2), \ldots,(6,6)\}$ is the set of all possible rolls of two unbiased dice
- Let $A=\{(1,1),(1,2),(1,3), \ldots,(1,6)\}$ be the event that the first die is a one and let $B=\{(1,6),(2,6), \ldots,(6,6)\}$ be the event that the second die is a six
- Are A and B independent?

A

$(1,1)$
$(1,2)$
$(1,4)$
$(1,5)$
$(1,6)$
$(1,3)$
$(3,6)$

Independence

- Now, suppose that $\Omega=\{(1,1),(1,2), \ldots,(6,6)\}$ is the set of all possible rolls of two unbiased dice
- Let $A=\{(1,1),(1,2),(1,3), \ldots,(1,6)\}$ be the event that the first die is a one and let $B=\{(1,6),(2,6), \ldots,(6,6)\}$ be the event that the second die is a six
- Are A and B independent?

Conditional Probability

- The conditional probability of an event A given an event B with $p(B)>0$ is defined to be

$$
p(A \mid B)=\frac{p(A \cap B)}{P(B)}
$$

- This is the probability of the event $A \cap B$ over the sample space $\Omega^{\prime}=B$
- Some properties:
$-\sum_{\omega \in B} p(\omega \mid B)=1$
- If A and B are independent, then $p(A \mid B)=p(A)$

Simple Example

Cheated	Grade	Probability
Yes	A	.3
Yes	F	.5
No	A	.15
No	F	.05

Chain Rule

$$
\begin{gathered}
p(A \cap B)=p(A) p(B \mid A) \\
p(A \cap B \cap C)=p(A \cap B) p(C \mid A \cap B) \\
=p(A) p(B \mid A) p(C \mid A \cap B) \\
\cdot \\
p\left(\bigcap_{i=1}^{n} A_{i}\right)=p\left(A_{1}\right) p\left(A_{2} \mid A_{1}\right) \ldots p\left(A_{n} \mid A_{1} \cap \cdots \cap A_{n-1}\right)
\end{gathered}
$$

Conditional Independence

- Two events A and B are independent if learning something about B tells you nothing about A (and vice versa)
- Two events A and B are conditionally independent given C if

$$
p(A \cap B \mid C)=p(A \mid C) p(B \mid C)
$$

- This is equivalent to

$$
p(A \mid B \cap C)=p(A \mid C)
$$

- That is, given C, information about B does tells you nothing about A (and vice versa)

Conditional Independence

- Let $\Omega=\{(H, H),(H, T),(T, H),(T, T)\}$ be the outcomes resulting from tossing two different fair coins
- Let A be the event that the first coin is heads
- Let B be the event that the second coin is heads
- Let C be the even that both coins are heads or both are tails
- A and B are independent, but A and B are not independent given C

Discrete Random Variables

- A discrete random variable, X, is a function from the state space Ω into a discrete space D
- For each $x \in D$,

$$
p(X=x) \equiv p(\{\omega \in \Omega: X(\omega)=x\})
$$

is the probability that X takes the value x
$-p(X)$ defines a probability distribution

- $\sum_{x \in D} p(X=x)=1$
- Random variables partition the state space into disjoint events

Example: Pair of Dice

- Let Ω be the set of all possible outcomes of rolling a pair of dice
- Let p be the uniform probability distribution over all possible outcomes in Ω
- Let $X(\omega)$ be equal to the sum of the value showing on the pair of dice in the outcome ω
$-p(X=2)=?$
$-p(X=8)=?$

Example: Pair of Dice

- Let Ω be the set of all possible outcomes of rolling a pair of dice
- Let p be the uniform probability distribution over all possible outcomes in Ω
- Let $X(\omega)$ be equal to the sum of the value showing on the pair of dice in the outcome ω

$$
-p(X=2)=\frac{1}{36}
$$

$-p(X=8)=?$

Example: Pair of Dice

- Let Ω be the set of all possible outcomes of rolling a pair of dice
- Let p be the uniform probability distribution over all possible outcomes in Ω
- Let $X(\omega)$ be equal to the sum of the value showing on the pair of dice in the outcome ω
$-p(X=2)=\frac{1}{36}$
$-p(X=8)=\frac{5}{36}$

Discrete Random Variables

- We can have vectors of random variables as well

$$
X(\omega)=\left[X_{1}(\omega), \ldots, X_{n}(\omega)\right]
$$

- The joint distribution is $p\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)$ is

$$
p\left(X_{1}=x_{1} \cap \cdots \cap X_{n}=x_{n}\right)
$$

typically written as

$$
p\left(x_{1}, \ldots, x_{n}\right)
$$

- Because $X_{i}=x_{i}$ is an event, all of the same rules -independence, conditioning, chain rule, etc. - still apply

Discrete Random Variables

- Two random variables X_{1} and X_{2} are independent if

$$
p\left(X_{1}=x_{1}, X_{2}=x_{2}\right)=p\left(X_{1}=x_{1}\right) p\left(X_{2}=x_{2}\right)
$$

for all values of x_{1} and x_{2}

- Similar definition for conditional independence
- The conditional distribution of X_{1} given $X_{2}=x_{2}$ is

$$
p\left(X_{1} \mid X_{2}=x_{2}\right)=\frac{p\left(X_{1}, X_{2}=x_{2}\right)}{p\left(X_{2}=x_{2}\right)}
$$

this means that this relationship holds for all choices of x_{1}

Example: Independent Sets

- Let Ω be the set of all vertex subsets in a graph $G=(V, E)$
- Let p be the uniform probability distribution over all independent sets in Ω
- Define for each $v \in V$,

$$
\begin{array}{ll}
X_{v}(\omega)=1, & \text { if } v \in \omega \text { and } \\
X_{v}(\omega)=0, & \text { otherwise }
\end{array}
$$

- $p\left(X_{v}=1\right)$ is the fraction of all independent sets in G containing v
- $p\left(x_{1}, \ldots, x_{n}\right) \neq 0$ if and only if the x 's define an independent set

Example: Independent Sets

Consider the graph on the left, with the sample space and probabilities from the last slide

- $p\left(X_{1}=1, X_{2}=0, X_{3}=0, X_{4}=1\right)=$?
- $p\left(X_{1}=0, X_{2}=1, X_{3}=1, X_{4}=0\right)=$?
- $p\left(X_{1}=1\right)=$?

Example: Independent Sets

- How large of a table is needed to store the joint distribution $p\left(X_{V}\right)$ for a given graph $G=(V, E)$?

Example: Independent Sets

- How large of a table is needed to store the joint distribution $p\left(X_{V}\right)$ for a given graph $G=(V, E)$?

$$
2^{|V|_{-1}}
$$

Structured Distributions

- Consider a general joint distribution $p\left(X_{1}, \ldots, X_{n}\right)$ over binary valued random variables
- If X_{1}, \ldots, X_{n} are all independent random variables, then

$$
p\left(x_{1}, \ldots, x_{n}\right)=p\left(x_{1}\right) \ldots p\left(x_{n}\right)
$$

- How much information is needed to store the joint distribution?

Structured Distributions

- Consider a general joint distribution $p\left(X_{1}, \ldots, X_{n}\right)$ over binary valued random variables
- If X_{1}, \ldots, X_{n} are all independent random variables, then

$$
p\left(x_{1}, \ldots, x_{n}\right)=p\left(x_{1}\right) \ldots p\left(x_{n}\right)
$$

- How much information is needed to store the joint distribution?

n numbers

- This model is boring: knowing the value of any one variable tells you nothing about the others

Structured Distributions

- Consider a general joint distribution $p\left(X_{1}, \ldots, X_{n}\right)$ over binary valued random variables
- If X_{1}, \ldots, X_{n} are all independent given a different random variable Y, then

$$
p\left(x_{1}, \ldots, x_{n} \mid y\right)=p\left(x_{1} \mid y\right) \ldots p\left(x_{n} \mid y\right)
$$

and

$$
p\left(y, x_{1}, \ldots, x_{n}\right)=p(y) p\left(x_{1} \mid y\right) \ldots p\left(x_{n} \mid y\right)
$$

- These models turn out to be surprisingly powerful, despite looking nearly identical to the previous case!

Marginal Distributions

- Given a joint distribution $p\left(X_{1}, \ldots, X_{n}\right)$, the marginal distribution over the $i^{t h}$ random variable is given by

$$
p_{i}\left(X_{i}=x_{i}\right)=\sum_{x_{1}} \sum_{x_{2}} \ldots \sum_{x_{i-1}} \sum_{x_{i}+1} \ldots \sum_{x_{n}} p\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)
$$

- In general, marginal distributions are obtained by fixing some subset of the variables and summing out over the others
- This can be an expensive operation!

Inference/Prediction

- Given fixed values of some subset, E, of the random variables, compute the conditional probability over the remaining variables, S

$$
p\left(X_{S} \mid X_{E}=x_{E}\right)=\frac{p\left(X_{S}, X_{E}=x_{E}\right)}{p\left(X_{E}=x_{E}\right)}
$$

- This involves computing the marginal distribution $p\left(X_{E}=x_{E}\right)$, so we refer to this as marginal inference

Inference/Prediction

- Given fixed values of some subset, E, of the random variables, compute the most likely assignment of the remaining variables, S

$$
\underset{x_{S}}{\operatorname{argmax}} p\left(X_{S}=x_{S} \mid X_{E}=x_{E}\right)
$$

- This is called maximum a posteriori (MAP) inference
- We don't need to do marginal inference to compute the MAP assignment, why not?

