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Discrete Probability

• Sample space specifies the set of possible outcomes

– For example, Ω = {H, T} would be the set of possible 

outcomes of a coin flip

• Each element 𝜔 ∈ Ω is associated with a number p 𝜔 ∈ [0,1]
called a probability

 

𝜔∈Ω

𝑝 𝜔 = 1

– For example, a biased coin might have 𝑝 𝐻 = .6 and 𝑝 𝑇 =
.4
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Discrete Probability

• An event is a subset of the sample space

– Let Ω = {1, 2, 3, 4, 5, 6} be the 6 possible outcomes of a dice 

role

– 𝐴 = 1, 5, 6 ⊆ Ω would be the event that the dice roll comes 

up as a one, five, or six

• The probability of an event is just the sum of all of the outcomes that 

it contains

– 𝑝 𝐴 = 𝑝 1 + 𝑝 5 + 𝑝(6)
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Independence

• Two events A and B are independent if 

𝑝 𝐴 ∩ 𝐵 = 𝑝 𝐴 𝑃(𝐵)

Let's suppose that we have a fair die:  𝑝 1 = … = 𝑝 6 = 1/6

If 𝐴 = {1, 2, 5} and 𝐵 = {3, 4, 6} are 𝐴 and 𝐵 indpendent?

1

2

5
3

6

4

𝐴 𝐵
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Independence

• Two events A and B are independent if 

𝑝 𝐴 ∩ 𝐵 = 𝑝 𝐴 𝑃(𝐵)

Let's suppose that we have a fair die:  𝑝 1 = … = 𝑝 6 = 1/6

If 𝐴 = {1, 2, 5} and 𝐵 = {3, 4, 6} are 𝐴 and 𝐵 indpendent?

1

2

5
3

6

4

𝐴 𝐵

No!

𝑝 𝐴 ∩ 𝐵 = 0 ≠
1

4

5



Independence

• Now, suppose that Ω = { 1,1 , 1,2 ,… , 6,6 } is the set of all 

possible rolls of two unbiased dice

• Let 𝐴 = { 1,1 , 1,2 , 1,3 ,… , 1,6 } be the event that the first 

die is a one and let 𝐵 = { 1,6 , 2,6 ,… , 6,6 } be the event that 

the second die is a six

• Are 𝐴 and 𝐵 independent?

(1,1)

1,2

(1,3)

(1,4)

(1,5)
(1,6)

(3,6)

2,6

(4,6)

(5,6)

(6,6)

𝐴 𝐵
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Independence

• Now, suppose that Ω = { 1,1 , 1,2 ,… , 6,6 } is the set of all 

possible rolls of two unbiased dice

• Let 𝐴 = { 1,1 , 1,2 , 1,3 ,… , 1,6 } be the event that the first 

die is a one and let 𝐵 = { 1,6 , 2,6 ,… , 6,6 } be the event that 

the second die is a six

• Are 𝐴 and 𝐵 independent?

(1,1)
𝐴 𝐵

Yes!

𝑝 𝐴 ∩ 𝐵 =
1

36
=
1

6
∗
1

6

1,2

(1,3)

(1,4)

(1,5)
(1,6)

(3,6)

2,6

(4,6)

(5,6)

(6,6)
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Conditional Probability

• The conditional probability of an event 𝐴 given an event 𝐵
with 𝑝 𝐵 > 0 is defined to be

𝑝 𝐴 𝐵 =
𝑝 𝐴 ∩ 𝐵

𝑃 𝐵

• This is the probability of the event 𝐴 ∩ 𝐵 over the sample space 

Ω′ = 𝐵

• Some properties:

–  𝜔∈𝐵 𝑝(𝜔|𝐵) = 1

– If 𝐴 and 𝐵 are independent, then 𝑝 𝐴 𝐵 = 𝑝(𝐴)
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Simple Example

Cheated Grade Probability

Yes A .3

Yes F .5

No A .15

No F .05
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Chain Rule

𝑝 𝐴 ∩ 𝐵 = 𝑝 𝐴 𝑝 𝐵 𝐴

𝑝 𝐴 ∩ 𝐵 ∩ 𝐶 = 𝑝 𝐴 ∩ 𝐵 𝑝 𝐶 𝐴 ∩ 𝐵
= 𝑝 𝐴 𝑝 𝐵 𝐴 𝑝(𝐶|𝐴 ∩ 𝐵)

.

.

.

𝑝  

𝑖=1

𝑛

𝐴𝑖 = 𝑝 𝐴1 𝑝 𝐴2 𝐴1 …𝑝(𝐴𝑛|𝐴1 ∩⋯∩ 𝐴𝑛−1)
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Conditional Independence

• Two events 𝐴 and 𝐵 are independent if learning something about 𝐵
tells you nothing about 𝐴 (and vice versa)

• Two events 𝐴 and 𝐵 are conditionally independent given 𝐶 if 

𝑝 𝐴 ∩ 𝐵 𝐶 = 𝑝 𝐴 𝐶 𝑝(𝐵|𝐶)

• This is equivalent  to

𝑝 𝐴 𝐵 ∩ 𝐶 = 𝑝(𝐴|𝐶)

– That is, given 𝐶, information about 𝐵 does tells you nothing about 

𝐴 (and vice versa)
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Conditional Independence

• Let Ω = { 𝐻,𝐻 , 𝐻, 𝑇 , 𝑇, 𝐻 , 𝑇, 𝑇 } be the outcomes resulting 

from tossing two different fair coins

• Let 𝐴 be the event that the first coin is heads

• Let 𝐵 be the event that the second coin is heads

• Let 𝐶 be the even that both coins are heads or both are tails

• 𝐴 and 𝐵 are independent, but 𝐴 and 𝐵 are not independent given 𝐶
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Discrete Random Variables

• A discrete random variable, 𝑋, is a function from the state space Ω
into a discrete space 𝐷

– For each 𝑥 ∈ 𝐷,

𝑝 𝑋 = 𝑥 ≡ 𝑝 𝜔 ∈ Ω ∶ 𝑋 𝜔 = 𝑥

is the probability that 𝑋 takes the value 𝑥

– 𝑝(𝑋) defines a probability distribution

•  𝑥∈𝐷 𝑝(𝑋 = 𝑥) = 1

• Random variables partition the state space into disjoint events
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Example: Pair of Dice

• Let Ω be the set of all possible outcomes of rolling a pair of dice

• Let 𝑝 be the uniform probability distribution over all possible 

outcomes in Ω

• Let 𝑋 𝜔 be equal to the sum of the value showing on the pair of dice 

in the outcome 𝜔

– 𝑝 𝑋 = 2 = ?

– 𝑝 𝑋 = 8 = ? 
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Example: Pair of Dice

• Let Ω be the set of all possible outcomes of rolling a pair of dice

• Let 𝑝 be the uniform probability distribution over all possible 

outcomes in Ω

• Let 𝑋 𝜔 be equal to the sum of the value showing on the pair of dice 

in the outcome 𝜔

– 𝑝 𝑋 = 2 =
𝟏

𝟑𝟔

– 𝑝 𝑋 = 8 = ? 
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Example: Pair of Dice

• Let Ω be the set of all possible outcomes of rolling a pair of dice

• Let 𝑝 be the uniform probability distribution over all possible 

outcomes in Ω

• Let 𝑋 𝜔 be equal to the sum of the value showing on the pair of dice 

in the outcome 𝜔

– 𝑝 𝑋 = 2 =
𝟏

𝟑𝟔

– 𝑝 𝑋 = 8 =
𝟓

𝟑𝟔

16



Discrete Random Variables

• We can have vectors of random variables as well

𝑋 𝜔 = [𝑋1 𝜔 ,… , 𝑋𝑛 𝜔 ]

• The joint distribution is 𝑝 𝑋1 = 𝑥1, … , 𝑋𝑛 = 𝑥𝑛 is

𝑝(𝑋1 = 𝑥1 ∩⋯∩ 𝑋𝑛 = 𝑥𝑛)

typically written as

𝑝(𝑥1, … , 𝑥𝑛)

• Because 𝑋𝑖 = 𝑥𝑖 is an event, all of the same rules - independence, 

conditioning, chain rule, etc. - still apply
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Discrete Random Variables

• Two random variables 𝑋1 and 𝑋2 are independent if

𝑝 𝑋1 = 𝑥1, 𝑋2 = 𝑥2 = 𝑝 𝑋1 = 𝑥1 𝑝(𝑋2 = 𝑥2)

for all values of 𝑥1 and 𝑥2

• Similar definition for conditional independence

• The conditional distribution of 𝑋1 given 𝑋2 = 𝑥2 is

𝑝 𝑋1 𝑋2 = 𝑥2 =
𝑝 𝑋1, 𝑋2 = 𝑥2
𝑝 𝑋2 = 𝑥2

this means that this relationship holds for all choices of 𝑥1
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Example: Independent Sets

• Let Ω be the set of all vertex subsets in a graph 𝐺 = (𝑉, 𝐸)

• Let 𝑝 be the uniform probability distribution over all independent sets 

in Ω

• Define for each v ∈ 𝑉,

𝑋𝑣 𝜔 = 1, if 𝑣 ∈ 𝜔 and 

𝑋𝑣 𝜔 = 0,          otherwise 

• 𝑝 𝑋𝑣 = 1 is the fraction of all independent sets in 𝐺 containing 𝑣

• 𝑝 𝑥1, … , 𝑥𝑛 ≠ 0 if and only if the 𝑥’s define an independent set
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Example: Independent Sets

Consider the graph on the left, with the 

sample space and probabilities from the 

last slide

• 𝑝 𝑋1 = 1, 𝑋2 = 0, 𝑋3 = 0, 𝑋4 = 1 = ?

• 𝑝 𝑋1 = 0, 𝑋2 = 1, 𝑋3 = 1, 𝑋4 = 0 = ?

• 𝑝 𝑋1 = 1 = ?

1

3 4

2
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Example: Independent Sets

• How large of a table is needed to store the joint distribution 𝑝 𝑋𝑉
for a given graph 𝐺 = (𝑉, 𝐸)? 
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Example: Independent Sets

• How large of a table is needed to store the joint distribution 𝑝 𝑋𝑉
for a given graph 𝐺 = (𝑉, 𝐸)? 

𝟐 𝑽 -1
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Structured Distributions

• Consider a general joint distribution 𝑝(𝑋1, … , 𝑋𝑛) over binary 

valued random variables

• If 𝑋1, … , 𝑋𝑛 are all independent random variables, then

𝑝 𝑥1, … , 𝑥𝑛 = 𝑝 𝑥1 …𝑝(𝑥𝑛)

• How much information is needed to store the joint distribution?
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Structured Distributions

• Consider a general joint distribution 𝑝(𝑋1, … , 𝑋𝑛) over binary 

valued random variables

• If 𝑋1, … , 𝑋𝑛 are all independent random variables, then

𝑝 𝑥1, … , 𝑥𝑛 = 𝑝 𝑥1 …𝑝(𝑥𝑛)

• How much information is needed to store the joint distribution?

𝒏 numbers

• This model is boring:  knowing the value of any one variable tells you 

nothing about the others
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Structured Distributions

• Consider a general joint distribution 𝑝(𝑋1, … , 𝑋𝑛) over binary 

valued random variables

• If 𝑋1, … , 𝑋𝑛 are all independent given a different random variable 𝑌, 

then

𝑝 𝑥1, … , 𝑥𝑛|𝑦 = 𝑝 𝑥1|𝑦 …𝑝 𝑥𝑛 𝑦

and

𝑝 𝑦, 𝑥1, … , 𝑥𝑛 = 𝑝(𝑦)𝑝 𝑥1|𝑦 …𝑝(𝑥𝑛|𝑦)

• These models turn out to be surprisingly powerful, despite looking 

nearly identical to the previous case!
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Marginal Distributions

• Given a joint distribution 𝑝(𝑋1, … , 𝑋𝑛), the marginal distribution 

over the 𝑖𝑡ℎrandom variable is given by

𝑝𝑖 𝑋𝑖 = 𝑥𝑖 = 

𝑥1

 

𝑥2

… 

𝑥𝑖−1

 

𝑥𝑖+1

… 

𝑥𝑛

𝑝(𝑋1 = 𝑥1, … , 𝑋𝑛 = 𝑥𝑛)

• In general, marginal distributions are obtained by fixing some subset 

of the variables and summing out over the others

– This can be an expensive operation!
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Inference/Prediction

• Given fixed values of some subset, 𝐸, of the random variables, 

compute the conditional probability over the remaining variables, 𝑆

𝑝 𝑋𝑆 𝑋𝐸 = 𝑥𝐸 =
𝑝 𝑋𝑆, 𝑋𝐸 = 𝑥𝐸
𝑝 𝑋𝐸 = 𝑥𝐸

• This involves computing the marginal distribution 𝑝(𝑋𝐸 = 𝑥𝐸), so 

we refer to this as marginal inference
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Inference/Prediction

• Given fixed values of some subset, 𝐸, of the random variables, 

compute the most likely assignment of the remaining variables, 𝑆

argmax
𝑥𝑆
𝑝(𝑋𝑆 = 𝑥𝑠|𝑋𝐸 = 𝑥𝐸)

• This is called maximum a posteriori (MAP) inference

• We don’t need to do marginal inference to compute the MAP 

assignment, why not?
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