CS 6347

Lecture 3

Bayesian Networks



Chain Rule

p(x1,%2) = p(x)p(xz1x1)

p(x1, oy x) = p(x)p(x2]x1) . DX, ooy X2 1)




Structured Distributions
_

* Consider a general joint distribution p (X, ..., X,,) over binary
valued random variables

* IfXy, ..., X,, are all independent given a different random variable Y/,
then

p(x, oy X |y) = p(x1|y) . D (20 |y)
and

PV, X1, s X)) = PYIP(X1|Y) .. D (X0 ]Y)

* How much storage is needed to represent this model?




Structured Distributions
_

 Consider a different joint distribution p (X3, ..., X;,) over binary
valued random variables

* Suppose, fori > 2, X; isindependent of X, ..., X;_, given X;_4

p(x1, s Xp) = p(x)P(x21%1) . (X | X1, oons Xp—1q)
= p(x)p(x2]x)p(x3]x3) ... D (X0 [X7—1)

* How much storage is needed to represent this model?

e This distribution is chain-like




Bayesian Network
-

* ABayesian network is a directed graphical model that captures
independence relationships of a given probability distribution

— Directed acyclic graph (DAG), G = (V, E)
— One node for each random variable
— One conditional probability distribution per node

— Directed edge represents a direct statistical dependence




Bayesian Network
-

* ABayesian network is a directed graphical model that captures
independence relationships of a given probability distribution

— Encodes local Markov independence assumptions that each
node is independent of its non-descendants given its parents

— Corresponds to a factorization of the joint distribution

p(xl» ---»xn) — Hp(xilxparents(i))
L




Directed Chain

p(x1, oy X)) = p(x)0(x2]x1)p(x3]%2) .. D (X0 | X0 —1)




Example:

* Local Markov independence relations?

e Joint distribution?




Example:

* This list is not exhaustive:

— How can we figure out which independence relationships the model
represents?




D-separation
e

* Independence relationships can be figured out by looking at the
graph structure!

— Easier than looking at the tables and plugging into the definition

* We look at all of the paths from X to Y in the graph and determine
whether or not they are blocked

— X c Visd-separated fromY c V given Z c V iff every path
from X to Y in the graph is blocked by Z
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D-separation
|

* Three types of situations can occur along any given path

(1) Sequential

OnOn0

The path from X to Y is blocked if we condition on W/

Intuitively, if we condition on I/, then information about X does not
affect Y and vice versa
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D-separation
e

* Three types of situations can occur along any given path

(2) Divergent

The path from X to Y is blocked if we condition on W/

If we don't condition on W, then information about W could effect the
probability of observing either X orY
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D-separation

* Three types of situations can occur along any given path

(3) Convergent

The path from X to Y is blocked if we do not condition on W or any of
its descendants

Conditioning on W couples the variables X and Y: knowing whether or
not X occurs impacts the probability that Y occurs
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D-separation
e

 [fthe joint probability distribution factorizes with respect to the DAG
G = (V,E), then X is d-separated from Y given Z implies X L
Y|Z

— We can use this to quickly check independence assertions by
using the graph

— In general, these are only a subset of all independence
relationships that are actually present in the joint distribution

— If X and Y are not d-separated in G given Z, then there is some
distribution that factorizes over G in which X and Y dependent
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D-separation
e

* LetI(p) be the set of all independence relationships in the joint
distribution p and /(G ) be the set of all independence relationships
in the graph G

 WesaythatGisanl-mapforl(p)ifI(G) € I(p)

* Theorem: the joint probability distribution, p, factorizes with respect
tothe DAGG = (V,E) iff G isan |-map for [ (p)

* Anl-mapis perfectif I (G) = I(p)

— Not always possible to perfectly represent all of the independence relations
with a graph
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D-separation Example




Equivalent Models?

K

Do these models represent the same independence
relations?
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Equivalent Models?
I —

Do these models represent the same independence
relations?
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Equivalent Models?

K

Do these models represent the same independence
relations?
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What independence relations does this model imply?
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1(G) = @, thisis an I-map for any joint distribution on four
variables!
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Naive Bayes
D —

PV, X1, s X)) = PYIP(X1|Y) .. D (X0 ]Y)

* In practice, we often have variables that we observe directly and
those that can only be observed indirectly
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Naive Bayes
D —

PV, X1, s X)) = PYIP(X1|Y) .. D (X0 ]Y)

* This model assumes that X, ..., X,, are independent given Y,
sometimes called naive Bayes
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Example: Naive Bayes
-

Let Y be a binary random variable indicating whether or not an email
is a piece of spam

* Foreachword in the dictionary, create a binary random variable X;
indicating whether or not word { appears in the email

* Forsimplicity, we will assume that X, ..., X,, are independent given
Y

 How do we compute the probability that an email is spam?
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Hidden Markov Models

p(x1, o X7, Y1, 0, Y1) = D)0 (X1 |Y1) np(ytlyt-l)p(xtlyt)
t

* Used in coding, speech recognition, etc.

* Independence assertions?




