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Lecture 3

Bayesian Networks



Chain Rule

𝑝 𝑥1, 𝑥2 = 𝑝 𝑥1 𝑝 𝑥2 𝑥1

.

.

.

𝑝 𝑥1, … , 𝑥𝑛 = 𝑝 𝑥1 𝑝 𝑥2 𝑥1 …𝑝(𝑥𝑛|𝑥1, … , 𝑥𝑛−1)
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Structured Distributions

• Consider a general joint distribution 𝑝(𝑋1, … , 𝑋𝑛) over binary 

valued random variables

• If 𝑋1, … , 𝑋𝑛 are all independent given a different random variable 𝑌, 

then

𝑝 𝑥1, … , 𝑥𝑛|𝑦 = 𝑝 𝑥1|𝑦 …𝑝 𝑥𝑛 𝑦

and

𝑝 𝑦, 𝑥1, … , 𝑥𝑛 = 𝑝(𝑦)𝑝 𝑥1|𝑦 …𝑝(𝑥𝑛|𝑦)

• How much storage is needed to represent this model?
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Structured Distributions

• Consider a different joint distribution 𝑝(𝑋1, … , 𝑋𝑛) over binary 

valued random variables

• Suppose, for 𝑖 > 2, 𝑋𝑖 is independent of 𝑋1, … , 𝑋𝑖−2 given 𝑋𝑖−1

𝑝 𝑥1, … , 𝑥𝑛 = 𝑝 𝑥1 𝑝 𝑥2 𝑥1 …𝑝(𝑥𝑛|𝑥1, … , 𝑥𝑛−1)

= 𝑝 𝑥1 𝑝 𝑥2 𝑥1 𝑝 𝑥3 𝑥2 …𝑝(𝑥𝑛|𝑥𝑛−1)

• How much storage is needed to represent this model?

• This distribution is chain-like
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Bayesian Network

• A Bayesian network is a directed graphical model that captures 

independence relationships of a given probability distribution

– Directed acyclic graph (DAG), 𝐺 = (𝑉, 𝐸)

– One node for each random variable

– One conditional probability distribution per node

– Directed edge represents a direct statistical dependence
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Bayesian Network

• A Bayesian network is a directed graphical model that captures 

independence relationships of a given probability distribution

– Encodes local Markov independence assumptions that each 

node is independent of its non-descendants given its parents

– Corresponds to a factorization of the joint distribution 

𝑝 𝑥1, … , 𝑥𝑛 = 

𝑖

𝑝(𝑥𝑖|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑖))
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Directed Chain

𝑝 𝑥1, … , 𝑥𝑛 = 𝑝 𝑥1 𝑝 𝑥2 𝑥1 𝑝 𝑥3 𝑥2 …𝑝(𝑥𝑛|𝑥𝑛−1)
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𝑋1 𝑋2 𝑋𝑛−1 𝑋𝑛...



Example:

• Local Markov independence relations?

• Joint distribution?
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Example:

• This list is not exhaustive:

– How can we figure out which independence relationships the model 

represents?
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D-separation

• Independence relationships can be figured out by looking at the 

graph structure!

– Easier than looking at the tables and plugging into the definition

• We look at all of the paths from 𝑋 to 𝑌 in the graph and determine 

whether or not they are blocked

– 𝑋 ⊂ 𝑉 is d-separated from 𝑌 ⊂ 𝑉 given 𝑍 ⊂ 𝑉 iff every path 

from 𝑋 to 𝑌 in the graph is blocked by 𝑍
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D-separation

• Three types of situations can occur along any given path

(1) Sequential

The path from 𝑋 to 𝑌 is blocked if we condition on 𝑊

Intuitively, if we condition on 𝑊, then information about 𝑋 does not 

affect 𝑌 and vice versa
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D-separation

• Three types of situations can occur along any given path

(2) Divergent

The path from 𝑋 to 𝑌 is blocked if we condition on 𝑊

If we don't condition on 𝑊, then information about 𝑊 could effect the 

probability of observing either 𝑋 or 𝑌
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D-separation

• Three types of situations can occur along any given path

(3) Convergent

The path from 𝑋 to 𝑌 is blocked if we do not condition on 𝑊 or any of 

its descendants

Conditioning on 𝑊 couples the variables 𝑋 and 𝑌: knowing whether or 

not 𝑋 occurs impacts the probability that 𝑌 occurs
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D-separation

• If the joint probability distribution factorizes with respect to the DAG 

𝐺 = (𝑉, 𝐸), then 𝑋 is d-separated from 𝑌 given 𝑍 implies 𝑋 ⊥
𝑌 | 𝑍

– We can use this to quickly check independence assertions by 

using the graph

– In general, these are only a subset of all independence 

relationships that are actually present in the joint distribution

– If 𝑋 and 𝑌 are not d-separated in 𝐺 given 𝑍, then there is some 

distribution that factorizes over 𝐺 in which 𝑋 and 𝑌 dependent

14



D-separation

• Let 𝐼(𝑝) be the set of all independence relationships in the joint 

distribution 𝑝 and 𝐼(𝐺) be the set of all independence relationships 

in the graph 𝐺

• We say that 𝐺 is an I-map for 𝐼(𝑝) if 𝐼 𝐺 ⊆ 𝐼(𝑝)

• Theorem:  the joint probability distribution, 𝑝, factorizes with respect 

to the DAG 𝐺 = (𝑉, 𝐸) iff 𝐺 is an I-map for 𝐼(𝑝)

• An I-map is perfect if 𝐼 𝐺 = 𝐼 𝑝

– Not always possible to perfectly represent all of the independence relations 

with a graph
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D-separation Example
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Equivalent Models?
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Equivalent Models?
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Equivalent Models?
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I-Maps
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I-Maps
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Naïve Bayes

𝑝 𝑦, 𝑥1, … , 𝑥𝑛 = 𝑝(𝑦)𝑝 𝑥1|𝑦 …𝑝(𝑥𝑛|𝑦)

• In practice, we often have variables that we observe directly and 

those that can only be observed indirectly
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Naïve Bayes

𝑝 𝑦, 𝑥1, … , 𝑥𝑛 = 𝑝(𝑦)𝑝 𝑥1|𝑦 …𝑝(𝑥𝑛|𝑦)

• This model assumes that 𝑋1, … , 𝑋𝑛 are independent given 𝑌, 

sometimes called naïve Bayes
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𝑋1 𝑋2 𝑋𝑛...



Example:  Naïve Bayes

• Let 𝑌 be a binary random variable indicating whether or not an email 

is a piece of spam

• For each word in the dictionary, create a binary random variable 𝑋𝑖
indicating whether or not word 𝑖 appears in the email

• For simplicity, we will assume that 𝑋1, … , 𝑋𝑛 are independent given 

𝑌

• How do we compute the probability that an email is spam?
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Hidden Markov Models

𝑝 𝑥1, … , 𝑥𝑇 , 𝑦1, … , 𝑦𝑇 = 𝑝 𝑦1 𝑝 𝑥1 𝑦1  

𝑡

𝑝 𝑦𝑡 𝑦𝑡−1 𝑝(𝑥𝑡|𝑦𝑡)

• Used in coding, speech recognition, etc.

• Independence assertions?

𝑌1 𝑌2 𝑌𝑇−1 𝑌𝑇...

𝑋1 𝑋2 𝑋𝑇−1 𝑋𝑇...


