
CS 6347 
 

Lecture 4 

 
Markov Random Fields 

(a.k.a Undirected Graphical Models) 



Bayesian Network 

 

• A Bayesian network is a directed graphical model 
that captures independence relationships of a given 
probability distribution 

 

– Encodes local Markov independence 
assumptions that each node is independent of its 
non-descendants given its parents 
 

– Corresponds to a factorization of the joint 
distribution  
 

𝑝 𝑥1, … , 𝑥𝑛 = 𝑝(𝑥𝑖|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑖))

𝑖
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Limits of Bayesian Networks 

 

• Not all sets of independence relations can be 
captured by a Bayesian network 
 

– 𝐴 ⊥ 𝐶 | 𝐵, 𝐷 

– 𝐵 ⊥ 𝐷 | 𝐴, 𝐶 
 

• Possible DAGs that represent these independence 
relationships? 
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Markov Random Fields (MRFs) 

 

• A Markov random field is an undirected graphical 
model 

 

– Undirected graph 𝐺 = (𝑉, 𝐸) 
 

– One node for each random variable 
 

– One potential function or "factor" associated with 
cliques, 𝐶, of the graph 
 

– Nonnegative potential functions represent 
interactions and need not correspond to 
conditional probabilities (may not even sum to 
one) 
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Markov Random Fields (MRFs) 

 

• A Markov random field is an undirected graphical 
model 

 

– Corresponds to a factorization of the joint 
distribution  
 

𝑝 𝑥1, … , 𝑥𝑛 =
1

𝑍
  𝜓𝑐(𝑥𝑐)

𝑐∈𝐶

 

 

𝑍 =    𝜓𝑐(𝑥𝑐
′)

𝑐∈𝐶𝑥1
′ ,…,𝑥𝑛
′
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Markov Random Fields (MRFs) 

 

• A Markov random field is an undirected graphical 
model 

 

– Corresponds to a factorization of the joint 
distribution  
 

𝑝 𝑥1, … , 𝑥𝑛 =
1

𝑍
  𝜓𝑐(𝑥𝑐)

𝑐∈𝐶

 

 

𝑍 =    𝜓𝑐(𝑥𝑐
′)

𝑐∈𝐶𝑥1
′ ,…,𝑥𝑛
′
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Normalizing constant, 𝑍, often called the partition 
function 



An Example 

 

 

 

 

 

• 𝑝 𝑥𝐴, 𝑥𝐵, 𝑥𝐶  =
1

𝑍
𝜓𝐴𝐵(𝑥𝐴, 𝑥𝐵)𝜓𝐵𝐶(𝑥𝐵, 𝑥𝐶) 𝜓𝐴𝐶(𝑥𝐴, 𝑥𝐶) 

 

• Each potential function can be specified as a table as 
before 
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𝐴 

𝐵 𝐶 

1 1 

1 0 

 𝑥𝐴 = 0    𝑥𝐴 = 1 

 

 

 

𝜓𝐴𝐵 𝑥𝐴, 𝑥𝐵 = 



The Ising Model 

 

• Mathematical model of ferromagnets 
 

• Each atom has an associated spin that is biased by 
both its neighbors in the material and an external 
magnetic field 
 

– Spins can be either +1 or -1 

– Edge potentials capture the local 
interactions 

– Singleton potentials capture the 
external field 
 

𝑝 𝑥𝑉 =
1

𝑍
exp ( ℎ𝑖𝑥𝑖
𝑖∈V

+  𝐽𝑖𝑗𝑥𝑖𝑥𝑗
𝑖,𝑗 ∈𝐸

) 
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Independence Assertions 

 

• Instead of d-separation, we need only consider 
separation: 
 

– If 𝑋 ⊆ 𝑉 is graph separated from 𝑌 ⊆ 𝑉 by 𝑍 ⊆ 𝑉, 
(i.e., all paths from 𝑋 to 𝑌 go through 𝑍) then 
𝑋 ⊥ 𝑌 | 𝑍 
 

– What independence assertions follow from this 
MRF? 
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𝐴 

𝐵 𝐶 

𝐷 



Independence Assertions 

 

 

 

 

 

𝑝 𝑥𝐴, 𝑥𝐵 , 𝑥𝐶 =
1

𝑍
𝜓𝐴𝐵 𝑥𝐴, 𝑥𝐵 𝜓𝐵𝐶(𝑥𝐵, 𝑥𝐶) 

 

• How does separation imply independence? 
 

• Show that 𝐴 ⊥ 𝐶 | 𝐵 
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𝐴 𝐵 𝐶 



Independence Assertions 

 

• In particular, each variable is independent of all of its 
non-neighbors given its neighbors 
 

– All paths leaving a single variable must pass 
through some neighbor 

 

• If the joint probability distribution, 𝑝, factorizes with 
respect to the graph 𝐺, then 𝐺 is an I-map for 𝑝 
 

• If 𝐺 is an I-map of a positive distribution 𝑝, then 𝑝 
factorizes with respect to the graph 𝐺  
 

– Hamersley-Clifford Theorem 
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BNs vs. MRFs 
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Property Bayesian Networks Markov Random Fields 

Factorization 
Conditional 

Distributions 
Potential Functions 

Distribution 
Product of Conditional 

Distributions 
Normalized Product of 

Potentials 

Cycles Not Allowed Allowed 

Partition 
Function 

1 
Potentially NP-hard to 

Compute 

Independence 
Test 

d-Separation Graph Separation 



Moralization 

 

• Every Bayesian network can be converted into an MRF 
with some possible loss of independence information 

 

– Remove the direction of all arrows in the network 
 

– If 𝐴 and 𝐵 are parents of 𝐶 in the Bayesian network, 
we add an edge between 𝐴 and 𝐵 in the MRF 

 

• This procedure is called "moralization" because it 
"marries" the parents of every node 
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Moralization 

 

• Every Bayesian network can be converted into an MRF 
with some possible loss of independence information 

 

– Remove the direction of all arrows in the network 
 

– If 𝐴 and 𝐵 are parents of 𝐶 in the Bayesian network, 
we add an edge between 𝐴 and 𝐵 in the MRF 

 

• This procedure is called "moralization" because it 
"marries" the parents of every node 
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Moralization 

 

 

 

 

 

 

 

 

• What independence information is lost? 
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Factorizations 

 

• Many factorizations over the same graph may 
represent the same joint distribution 
 

– Some are better than others (e.g., they more 
compactly represent the distribution) 
 

– Simply looking at the graph is not enough to 
understand which specific factorization is being 
assumed 
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𝐷 



Factor Graphs 

 

• Factor graphs are used to explicitly represent a given 
factorization over a given graph 
 

– Not a different model, but rather different way to 
visualize an MRF 

 

– Undirected bipartite graph with two types of 
nodes: variable nodes (circles) and factor nodes 
(squares) 
 

– Factor nodes are connected to the variable nodes 
on which they depend 
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Factor Graphs 

 

𝑝 𝑥𝐴, 𝑥𝐵, 𝑥𝐶 =
1

𝑍
𝜓𝐴𝐵(𝑥𝐴, 𝑥𝐵)𝜓𝐵𝐶(𝑥𝐵, 𝑥𝐶) 𝜓𝐴𝐶 𝑥𝐴, 𝑥𝐶  
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𝐴 

𝐵 𝐶 

 𝜓𝐴𝐶 

 𝜓𝐵𝐶 

 𝜓𝐴𝐵 



Conditional Random Fields (CRFs) 

 

• Undirected graphical models that represent 
conditional probability distributions 𝑝 𝑌  𝑋) 
 

– Potentials can depend on both 𝑋 and 𝑌, typically 
only the observed variables are considered in the 
model 
 

𝑝 𝑌  𝑋) =
1

𝑍(𝑥)
 𝜓𝑐(𝑥𝑐 , 𝑦𝑐)

𝑐∈C

 

 

𝑍 𝑥 =  𝜓𝑐(𝑥𝑐 , 𝑦𝑐
′)

𝑐∈C𝑦′
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Log-Linear Models 

 

• CRFs often assume that the potentials are log-linear 
functions 

 
𝜓𝑐 𝑥𝑐 , 𝑦𝑐 = exp(𝑤 ⋅ 𝑓𝑐(𝑥𝑐 , 𝑦𝑐)) 

 

where 𝑓𝑐 is referred to as a feature vector and 𝑤 is some 
vector of feature weights 

 

• The feature weights are typically learned from data 
 

• CRFs don’t require us to model the full joint 
distribution (which may not be possible anyhow) 
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Conditional Random Fields (CRFs) 

 

• Binary image segmentation 
 

– Label the pixels of an image as belonging to the 
foreground or background 
 

– +/- correspond to foreground/background  
 

– Interaction between neighboring pixels in the 
image depends on how similar the pixels are 
 

• Similar pixels should preference having the 
same spin  
(i.e., being in the same part of the image) 
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Conditional Random Fields (CRFs) 

 

• Binary image segmentation 
 

– This can be modeled as a CRF where the image 
information (e.g., pixel colors) is observed, but the 
segmentation is unobserved 
 

– Because the model is conditional, we don’t need to 
describe the joint probability distribution of 
(natural) images and their foreground/background 
segmentations 
 

– CRFs will be particularly important when we want 
to learn graphical models 
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Low Density Parity Check Codes 

 

• Want to send a message across a noisy channel in 
which bits can be flipped with some probability – use 
error correcting codes 

 

 

 

 
 
 

• 𝜓𝐴, 𝜓𝐵, 𝜓𝐶 are all parity check constraints:  they equal 
one if their input contains an even number of ones 
and zero otherwise 
 

• 𝜙𝑖 𝑥𝑖 , 𝑦𝑖 = 𝑝 𝑦𝑖 𝑥𝑖 , the probability that the 𝑖th bit was 
flipped during transmission 
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𝑦1 

 𝜓𝐴 

𝑦2 𝑦3 𝑦4 𝑦5 𝑦6 

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 

 𝜓𝐵  𝜓𝐶 

 𝜙1  𝜙2  𝜙3  𝜙4  𝜙5  𝜙6 



Low Density Parity Check Codes 

 

 

 

 

 
 

 

• The parity check constraints enforce that the 𝑦’s can 
only be one of a few possible codewords:  000000, 
001011, 010101, 011110, 100110, 101101, 110011, 
111000 
 

• Decoding the message that was sent is equivalent to 
computing the most likely codeword under the joint 
probability distribution 
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𝑦1 

 𝜓𝐴 

𝑦2 𝑦3 𝑦4 𝑦5 𝑦6 

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 

 𝜓𝐵  𝜓𝐶 

 𝜙1  𝜙2  𝜙3  𝜙4  𝜙5  𝜙6 



Low Density Parity Check Codes 

 

 

 

 

 
 

 

 

• Most likely codeword is given by MAP inference 
 

argmax
𝑦
𝑝 𝑦|𝑥  

 

• Do we need to compute the partition function for 
MAP inference? 
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 𝜓𝐴 

𝑦2 𝑦3 𝑦4 𝑦5 𝑦6 
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