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Lecture 5

Exact Inference



Markov Random Fields (MRFs)

• A Markov random field is an undirected graphical model

– Undirected graph 𝐺 = (𝑉, 𝐸)

– One node for each random variable

– One potential function or "factor" associated with cliques, 𝐶, 

of the graph

– Nonnegative potential functions represent interactions and 

need not correspond to conditional probabilities (may not even 

sum to one)
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Markov Random Fields (MRFs)

• A Markov random field is an undirected graphical model

– Corresponds to a factorization of the joint distribution 

𝑝 𝑥1, … , 𝑥𝑛 =
1

𝑍
 

𝑐∈𝐶

𝜓𝑐(𝑥𝑐)

𝑍 =  

𝑥1
′ ,…,𝑥𝑛
′

 

𝑐∈𝐶

𝜓𝑐(𝑥𝑐
′)
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Exact Inference

• Computing the partition function and the MAP assignment are both 

NP-hard in general

– Could use it to count independent sets or find the largest 

independent set in a graph, etc.

– We could easily encode 3-SAT as a graphical model:  computing 

the number of satisfying assignments would solve the 

satisfiability problem
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Inference

𝑝 𝑥𝐴, 𝑥𝐵, 𝑥𝐶 =
1

𝑍
𝜓𝐴𝐵 𝑥𝐴, 𝑥𝐵 𝜓𝐵𝐶 𝑥𝐵, 𝑥𝐶 𝜓𝐶𝐷(𝑥𝐶 , 𝑥𝐷)

𝑍 =  

𝑥𝐴
′ ,𝑥𝐵
′ ,𝑥𝐶
′ ,𝑥𝐷
′

𝜓𝐴𝐵 𝑥𝐴
′ , 𝑥𝐵
′ 𝜓𝐵𝐶 𝑥𝐵

′ , 𝑥𝐶
′ 𝜓𝐶𝐷(𝑥𝐶

′ , 𝑥𝐷
′ )
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𝐴 𝐵 𝐶 𝐷



Inference

𝑍 =  

𝑥𝐴
′ ,𝑥𝐵
′ ,𝑥𝐶
′ ,𝑥𝐷
′

𝜓𝐴𝐵 𝑥𝐴
′ , 𝑥𝐵
′ 𝜓𝐵𝐶 𝑥𝐵

′ , 𝑥𝐶
′ 𝜓𝐶𝐷(𝑥𝐶

′ , 𝑥𝐷
′ )

= 

𝑥𝐴
′

 

𝑥𝐵
′

 

𝑥𝐶
′

 

𝑥𝐷
′

𝜓𝐴𝐵 𝑥𝐴
′ , 𝑥𝐵
′ 𝜓𝐵𝐶 𝑥𝐵

′ , 𝑥𝐶
′ 𝜓𝐶𝐷(𝑥𝐶

′ , 𝑥𝐷
′ )

= 

𝑥𝐴
′

 

𝑥𝐵
′

𝜓𝐴𝐵 𝑥𝐴
′ , 𝑥𝐵
′  

𝑥𝐶
′

𝜓𝐵𝐶 𝑥𝐵
′ , 𝑥𝐶
′  

𝑥𝐷
′

𝜓𝐶𝐷(𝑥𝐶
′ , 𝑥𝐷
′ )
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Inference

𝑍 =  

𝑥𝐴
′ ,𝑥𝐵
′ ,𝑥𝐶
′ ,𝑥𝐷
′

𝜓𝐴𝐵 𝑥𝐴
′ , 𝑥𝐵
′ 𝜓𝐵𝐶 𝑥𝐵

′ , 𝑥𝐶
′ 𝜓𝐶𝐷(𝑥𝐶

′ , 𝑥𝐷
′ )

= 

𝑥𝐴
′

 

𝑥𝐵
′

 

𝑥𝐶
′

 

𝑥𝐷
′

𝜓𝐴𝐵 𝑥𝐴
′ , 𝑥𝐵
′ 𝜓𝐵𝐶 𝑥𝐵

′ , 𝑥𝐶
′ 𝜓𝐶𝐷(𝑥𝐶

′ , 𝑥𝐷
′ )

= 

𝑥𝐴
′

 

𝑥𝐵
′

𝜓𝐴𝐵 𝑥𝐴
′ , 𝑥𝐵
′  

𝑥𝐶
′

𝜓𝐵𝐶 𝑥𝐵
′ , 𝑥𝐶
′  

𝑥𝐷
′

𝜓𝐶𝐷(𝑥𝐶
′ , 𝑥𝐷
′ )
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𝜙𝐶(𝑥𝐶
′ )



Inference

𝑍 =  

𝑥𝐴
′ ,𝑥𝐵
′ ,𝑥𝐶
′ ,𝑥𝐷
′

𝜓𝐴𝐵 𝑥𝐴
′ , 𝑥𝐵
′ 𝜓𝐵𝐶 𝑥𝐵

′ , 𝑥𝐶
′ 𝜓𝐶𝐷(𝑥𝐶

′ , 𝑥𝐷
′ )

= 

𝑥𝐴
′

 

𝑥𝐵
′

 

𝑥𝐶
′

 

𝑥𝐷
′

𝜓𝐴𝐵 𝑥𝐴
′ , 𝑥𝐵
′ 𝜓𝐵𝐶 𝑥𝐵

′ , 𝑥𝐶
′ 𝜓𝐶𝐷(𝑥𝐶

′ , 𝑥𝐷
′ )

= 

𝑥𝐴
′

 

𝑥𝐵
′

𝜓𝐴𝐵 𝑥𝐴
′ , 𝑥𝐵
′  

𝑥𝐶
′

𝜓𝐵𝐶 𝑥𝐵
′ , 𝑥𝐶
′ 𝜙𝐶(𝑥𝐶

′ )
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Inference

𝑍 =  

𝑥𝐴
′ ,𝑥𝐵
′ ,𝑥𝐶
′ ,𝑥𝐷
′

𝜓𝐴𝐵 𝑥𝐴
′ , 𝑥𝐵
′ 𝜓𝐵𝐶 𝑥𝐵

′ , 𝑥𝐶
′ 𝜓𝐶𝐷(𝑥𝐶

′ , 𝑥𝐷
′ )

= 

𝑥𝐴
′

 

𝑥𝐵
′

 

𝑥𝐶
′

 

𝑥𝐷
′

𝜓𝐴𝐵 𝑥𝐴
′ , 𝑥𝐵
′ 𝜓𝐵𝐶 𝑥𝐵

′ , 𝑥𝐶
′ 𝜓𝐶𝐷(𝑥𝐶

′ , 𝑥𝐷
′ )

= 

𝑥𝐴
′

 

𝑥𝐵
′

𝜓𝐴𝐵 𝑥𝐴
′ , 𝑥𝐵
′  

𝑥𝐶
′

𝜓𝐵𝐶 𝑥𝐵
′ , 𝑥𝐶
′ 𝜙𝐶(𝑥𝐶

′ )
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𝜙𝐵(𝑥𝐵
′ )



Inference

𝑍 =  

𝑥𝐴
′ ,𝑥𝐵
′ ,𝑥𝐶
′ ,𝑥𝐷
′

𝜓𝐴𝐵 𝑥𝐴
′ , 𝑥𝐵
′ 𝜓𝐵𝐶 𝑥𝐵

′ , 𝑥𝐶
′ 𝜓𝐶𝐷(𝑥𝐶

′ , 𝑥𝐷
′ )

= 

𝑥𝐴
′

 

𝑥𝐵
′

 

𝑥𝐶
′

 

𝑥𝐷
′

𝜓𝐴𝐵 𝑥𝐴
′ , 𝑥𝐵
′ 𝜓𝐵𝐶 𝑥𝐵

′ , 𝑥𝐶
′ 𝜓𝐶𝐷(𝑥𝐶

′ , 𝑥𝐷
′ )

= 

𝑥𝐴
′

 

𝑥𝐵
′

𝜓𝐴𝐵 𝑥𝐴
′ , 𝑥𝐵
′ 𝜙𝐵(𝑥𝐵

′ )
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Inference

𝑍 =  

𝑥𝐴
′ ,𝑥𝐵
′ ,𝑥𝐶
′ ,𝑥𝐷
′

𝜓𝐴𝐵 𝑥𝐴
′ , 𝑥𝐵
′ 𝜓𝐵𝐶 𝑥𝐵

′ , 𝑥𝐶
′ 𝜓𝐶𝐷(𝑥𝐶

′ , 𝑥𝐷
′ )

= 

𝑥𝐴
′

 

𝑥𝐵
′

 

𝑥𝐶
′

 

𝑥𝐷
′

𝜓𝐴𝐵 𝑥𝐴
′ , 𝑥𝐵
′ 𝜓𝐵𝐶 𝑥𝐵

′ , 𝑥𝐶
′ 𝜓𝐶𝐷(𝑥𝐶

′ , 𝑥𝐷
′ )

= 

𝑥𝐴
′

 

𝑥𝐵
′

𝜓𝐴𝐵 𝑥𝐴
′ , 𝑥𝐵
′ 𝜙𝐵(𝑥𝐵

′ )
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𝜙𝐴(𝑥𝐴
′ )



Inference

𝑍 =  

𝑥𝐴
′ ,𝑥𝐵
′ ,𝑥𝐶
′ ,𝑥𝐷
′

𝜓𝐴𝐵 𝑥𝐴
′ , 𝑥𝐵
′ 𝜓𝐵𝐶 𝑥𝐵

′ , 𝑥𝐶
′ 𝜓𝐶𝐷(𝑥𝐶

′ , 𝑥𝐷
′ )

= 

𝑥𝐴
′

 

𝑥𝐵
′

 

𝑥𝐶
′

 

𝑥𝐷
′

𝜓𝐴𝐵 𝑥𝐴
′ , 𝑥𝐵
′ 𝜓𝐵𝐶 𝑥𝐵

′ , 𝑥𝐶
′ 𝜓𝐶𝐷(𝑥𝐶

′ , 𝑥𝐷
′ )

= 

𝑥𝐴
′

𝜙𝐴 𝑥𝐴
′
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Variable Elimination

• Choose an ordering of the random variables

• Sum the joint distribution over the variables one at a time in the 

specified order exploiting the factorization where possible

– Each time a variable is eliminated, it creates a new potential that 

is multiplied back in after removing the sum that generated this 

potential
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Variable Elimination

• What is the cost of variable elimination on the chain?
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Variable Elimination

• What is the cost of variable elimination on the chain?

length of the chain × (size of state space)2
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Another Example

Elimination order: C, B, D, F, E, A

(worked out on the board)
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𝐴 𝐵 𝐶 𝐷

𝐸 𝐹



Another Example

Elimination order: C, B, D, F, E, A
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𝐴 𝐵 𝐶 𝐷

𝐸 𝐹



Another Example

Elimination order: C, B, D, F, E, A
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𝐴 𝐵 𝐷

𝐸 𝐹



Another Example

Elimination order: C, B, D, F, E, A
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𝐴 𝐵 𝐷

𝐸 𝐹



Another Example

Elimination order: C, B, D, F, E, A

20

𝐴 𝐷

𝐸 𝐹



Another Example

Elimination order: C, B, D, F, E, A
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𝐴 𝐷

𝐸 𝐹



Another Example

Elimination order: C, B, D, F, E, A
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𝐴

𝐸 𝐹



Another Example

Elimination order: C, B, D, F, E, A
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𝐴

𝐸 𝐹



Another Example

Elimination order: C, B, D, F, E, A
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𝐴

𝐸



Another Example

Elimination order: C, B, D, F, E, A
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𝐴

𝐸



Another Example

Elimination order: C, B, D, F, E, A
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𝐴



Another Example

Elimination order: C, B, D, F, E, A
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𝐴



Another Example

Elimination order: C, B, D, F, E, A
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Treewidth

• The treewidth of a graph is equal to the size of the largest clique 

created in any optimal elimination ordering

– Tree width of a tree:  ?
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Treewidth

• The treewidth of a graph is equal to the size of the largest clique 

created in any optimal elimination ordering

– Tree width of a tree:  1 (as long as it has at least one edge)

• The complexity of variable elimination is upper bounded by n ⋅ (size 

of the state space)treewidth+1
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What is the Treewidth of this Graph?
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𝐴 𝐵 𝐶 𝐷

𝐸 𝐹



What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A
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𝐴 𝐵 𝐶 𝐷

𝐸 𝐹



What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A
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𝐴 𝐵 𝐶 𝐷

𝐸 𝐹



What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A
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𝐴 𝐵 𝐶

𝐸 𝐹



What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A
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𝐴 𝐵 𝐶

𝐸 𝐹



What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A
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𝐴 𝐵

𝐸 𝐹



What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A
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𝐴 𝐵

𝐸 𝐹



What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A
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𝐴 𝐵

𝐸



What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A
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𝐴 𝐵

𝐸



What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A
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𝐴 𝐵



What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A
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𝐴 𝐵



What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A
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𝐴



What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A
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𝐴



What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A

Largest clique created had size two

(this is the best that we can do)
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Elimination Orderings

• Finding the optimal elimination ordering is NP-hard!

• Heuristic methods are often used in practice

– Min-degree:  the cost of a vertex is the number of neighbors it has 

in the current graph

– Min-fill: the cost of a vertex is the number of new edges that need 

to be added to the graph due to its elimination
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Belief Propagation

• Efficient method for inference on a tree

• Represent the variable elimination process as a collection of 

messages passed between nodes in the tree

– The messages keep track of the potential functions produced 

throughout the elimination process
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Belief Propagation

• 𝑝 𝑥1, … , 𝑥𝑛 =  𝑖∈𝑉𝜙𝑖(𝑥𝑖) 𝑖,𝑗 ∈𝐸𝜓𝑖𝑗(𝑥𝑖 , 𝑥𝑗)

𝑚𝑖→𝑗 𝑥𝑗 = 

𝑥𝑖

𝜙𝑖 𝑥𝑖 𝜓𝑖𝑗 𝑥𝑖 , 𝑥𝑗  

𝑘∈𝑁 𝑖 ∖𝑗

𝑚𝑘→i(𝑥𝑖)

where 𝑁(𝑖) is the set of neighbors of node 𝑖 in the graph

• Messages are passed in two phases:  from the leaves up to the root 

and then from the root down to the leaves
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Belief Propagation

• As an added bonus, BP allows you to efficiently compute the 

marginal probability over each single variable as well as the partition 

function

– Multiply the singleton potentials with all of the incoming 

messages

– Computing the normalization constant for this function gives the 

partition function of the model

• A similar strategy can be used whenever the factor graph is a tree

– Two types of messages:  factor-to-variable and variable-to-factor 
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Belief Propagation

• What is the complexity of belief propagation on a tree with state 

space 𝐷?
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Belief Propagation

• What is the complexity of belief propagation on a tree with state 

space 𝐷?

𝑂 𝑛 𝐷 2

• What if we want to compute the MAP assignment instead of the 

partition function?
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