CS 6347

Lecture 5

Exact Inference

Markov Random Fields (MRFs)

- A Markov random field is an undirected graphical model
- Undirected graph $G=(V, E)$
- One node for each random variable
- One potential function or "factor" associated with cliques, C, of the graph
- Nonnegative potential functions represent interactions and need not correspond to conditional probabilities (may not even sum to one)

Markov Random Fields (MRFs)

- A Markov random field is an undirected graphical model
- Corresponds to a factorization of the joint distribution

$$
p\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{Z} \prod_{c \in C} \psi_{c}\left(x_{c}\right)
$$

$$
Z=\sum_{x_{1}^{\prime}, \ldots, x_{n}^{\prime}} \prod_{c \in C} \psi_{c}\left(x_{c}^{\prime}\right)
$$

Exact Inference

- Computing the partition function and the MAP assignment are both NP-hard in general
- Could use it to count independent sets or find the largest independent set in a graph, etc.
- We could easily encode 3-SAT as a graphical model: computing the number of satisfying assignments would solve the satisfiability problem

Inference

$$
\begin{aligned}
& p\left(x_{A}, x_{B}, x_{C}\right)=\frac{1}{Z} \psi_{A B}\left(x_{A}, x_{B}\right) \psi_{B C}\left(x_{B}, x_{C}\right) \psi_{C D}\left(x_{C}, x_{D}\right) \\
& Z=\sum_{x_{A}^{\prime}, x_{B}^{\prime}, x_{C}^{\prime}, x_{D}^{\prime}} \psi_{A B}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \psi_{B C}\left(x_{B}^{\prime}, x_{C}^{\prime}\right) \psi_{C D}\left(x_{C}^{\prime}, x_{D}^{\prime}\right)
\end{aligned}
$$

Inference

$$
\begin{aligned}
Z & =\sum_{x_{A}^{\prime}, x_{B}^{\prime}, x_{C}^{\prime}, x_{D}^{\prime}} \psi_{A B}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \psi_{B C}\left(x_{B}^{\prime}, x_{C}^{\prime}\right) \psi_{C D}\left(x_{C}^{\prime}, x_{D}^{\prime}\right) \\
& =\sum_{x_{A}^{\prime}} \sum_{x_{B}^{\prime}} \sum_{x_{C}^{\prime}} \sum_{x_{D}^{\prime}} \psi_{A B}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \psi_{B C}\left(x_{B}^{\prime}, x_{C}^{\prime}\right) \psi_{C D}\left(x_{C}^{\prime}, x_{D}^{\prime}\right) \\
& =\sum_{x_{A}^{\prime}} \sum_{x_{B}^{\prime}} \psi_{A B}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \sum_{x_{C}^{\prime}} \psi_{B C}\left(x_{B}^{\prime}, x_{C}^{\prime}\right) \sum_{x_{D}^{\prime}} \psi_{C D}\left(x_{C}^{\prime}, x_{D}^{\prime}\right)
\end{aligned}
$$

Inference

$$
\begin{aligned}
Z & =\sum_{x_{A}^{\prime}, x_{B}^{\prime}, x_{C}^{\prime}, x_{D}^{\prime}} \psi_{A B}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \psi_{B C}\left(x_{B}^{\prime}, x_{C}^{\prime}\right) \psi_{C D}\left(x_{C}^{\prime}, x_{D}^{\prime}\right) \\
& =\sum_{x_{A}^{\prime}} \sum_{x_{B}^{\prime}} \sum_{x_{C}^{\prime}} \sum_{x_{D}^{\prime}} \psi_{A B}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \psi_{B C}\left(x_{B}^{\prime}, x_{C}^{\prime}\right) \psi_{C D}\left(x_{C}^{\prime}, x_{D}^{\prime}\right) \\
& =\sum_{x_{A}^{\prime}} \sum_{x_{B}^{\prime}} \psi_{A B}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \sum_{x_{C}^{\prime}} \psi_{B C}\left(x_{B}^{\prime}, x_{C}^{\prime}\right) \overbrace{\sum_{x_{D}^{\prime}} \psi_{C D}\left(x_{C}^{\prime}, x_{D}^{\prime}\right)}^{\phi_{C}\left(x_{C}^{\prime}\right)}
\end{aligned}
$$

Inference

$$
\begin{aligned}
Z & =\sum_{x_{A}^{\prime} x_{B}^{\prime}, x_{C}^{\prime}, x_{D}^{\prime}} \psi_{A B}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \psi_{B C}\left(x_{B}^{\prime}, x_{C}^{\prime}\right) \psi_{C D}\left(x_{C}^{\prime}, x_{D}^{\prime}\right) \\
& =\sum_{x_{A}^{\prime}} \sum_{x_{B}^{\prime}} \sum_{x_{C}^{\prime}} \sum_{x_{D}^{\prime}} \psi_{A B}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \psi_{B C}\left(x_{B}^{\prime}, x_{C}^{\prime}\right) \psi_{C D}\left(x_{C}^{\prime}, x_{D}^{\prime}\right) \\
& =\sum_{x_{A}^{\prime}} \sum_{x_{B}^{\prime}} \psi_{A B}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \sum_{x_{C}^{\prime}} \psi_{B C}\left(x_{B}^{\prime}, x_{C}^{\prime}\right) \phi_{C}\left(x_{C}^{\prime}\right)
\end{aligned}
$$

Inference

$$
\begin{aligned}
Z & =\sum_{x_{A}^{\prime}, x_{B}^{\prime}, x_{C}^{\prime}, x_{D}^{\prime}} \psi_{A B}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \psi_{B C}\left(x_{B}^{\prime}, x_{C}^{\prime}\right) \psi_{C D}\left(x_{C}^{\prime}, x_{D}^{\prime}\right) \\
& =\sum_{x_{A}^{\prime}} \sum_{x_{B}^{\prime}} \sum_{x_{C}^{\prime}} \sum_{x_{D}^{\prime}} \psi_{A B}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \psi_{B C}\left(x_{B}^{\prime}, x_{C}^{\prime}\right) \psi_{C D}\left(x_{C}^{\prime}, x_{D}^{\prime}\right) \\
& =\sum_{x_{A}^{\prime}} \sum_{x_{B}^{\prime}} \psi_{A B}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \sum_{\sum_{x_{C}^{\prime}} \psi_{B C}\left(x_{B}^{\prime}, x_{C}^{\prime}\right) \phi_{C}\left(x_{C}^{\prime}\right)}^{\phi_{B}\left(x_{B}^{\prime}\right)}
\end{aligned}
$$

Inference

$$
\begin{aligned}
Z & =\sum_{x_{A}^{\prime}, x_{B}^{\prime}, x_{C}^{\prime}, x_{D}^{\prime}} \psi_{A B}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \psi_{B C}\left(x_{B}^{\prime}, x_{C}^{\prime}\right) \psi_{C D}\left(x_{C}^{\prime}, x_{D}^{\prime}\right) \\
& =\sum_{x_{A}^{\prime}} \sum_{x_{B}^{\prime}} \sum_{x_{C}^{\prime}} \sum_{x_{D}^{\prime}} \psi_{A B}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \psi_{B C}\left(x_{B}^{\prime}, x_{C}^{\prime}\right) \psi_{C D}\left(x_{C}^{\prime}, x_{D}^{\prime}\right) \\
& =\sum_{x_{A}^{\prime}} \sum_{x_{B}^{\prime}} \psi_{A B}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \phi_{B}\left(x_{B}^{\prime}\right)
\end{aligned}
$$

Inference

$$
\begin{aligned}
Z & =\sum_{x_{A}^{\prime} x_{B}^{\prime}, x_{C}^{\prime}, x_{D}^{\prime}} \psi_{A B}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \psi_{B C}\left(x_{B}^{\prime}, x_{C}^{\prime}\right) \psi_{C D}\left(x_{C}^{\prime}, x_{D}^{\prime}\right) \\
& =\sum_{x_{A}^{\prime}} \sum_{x_{B}^{\prime}} \sum_{x_{C}^{\prime}} \sum_{x_{D}^{\prime}} \psi_{A B}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \psi_{B C}\left(x_{B}^{\prime}, x_{C}^{\prime}\right) \psi_{C D}\left(x_{C}^{\prime}, x_{D}^{\prime}\right) \\
& =\sum_{x_{A}^{\prime}} \sum_{x_{B}^{\prime}} \psi_{A B}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \phi_{B}\left(x_{B}^{\prime}\right)
\end{aligned}
$$

Inference

$$
\begin{aligned}
Z & =\sum_{x_{A}^{\prime} x_{B}^{\prime}, x_{C}^{\prime}, x_{D}^{\prime}} \psi_{A B}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \psi_{B C}\left(x_{B}^{\prime}, x_{C}^{\prime}\right) \psi_{C D}\left(x_{C}^{\prime}, x_{D}^{\prime}\right) \\
& =\sum_{x_{A}^{\prime}} \sum_{x_{B}^{\prime}} \sum_{x_{C}^{\prime}} \sum_{x_{D}^{\prime}} \psi_{A B}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \psi_{B C}\left(x_{B}^{\prime}, x_{C}^{\prime}\right) \psi_{C D}\left(x_{C}^{\prime}, x_{D}^{\prime}\right) \\
& =\sum_{x_{A}^{\prime}} \phi_{A}\left(x_{A}^{\prime}\right)
\end{aligned}
$$

Variable Elimination

- Choose an ordering of the random variables
- Sum the joint distribution over the variables one at a time in the specified order exploiting the factorization where possible
- Each time a variable is eliminated, it creates a new potential that is multiplied back in after removing the sum that generated this potential

Variable Elimination

- What is the cost of variable elimination on the chain?

Variable Elimination

- What is the cost of variable elimination on the chain?

$$
\text { length of the chain } \times(\text { size of state space })^{2}
$$

Another Example

Elimination order: C, B, D, F, E, A
(worked out on the board)

Another Example

Elimination order: C, B, D, F, E, A

Another Example

Elimination order: C, B, D, F, E, A

Another Example

Elimination order: C, B, D, F, E, A

Another Example

Elimination order: C, B, D, F, E, A

Another Example

Elimination order: C, B, D, F, E, A

Another Example

Elimination order: C, B, D, F, E, A

Another Example

Elimination order: C, B, D, F, E, A

Another Example

Elimination order: C, B, D, F, E, A

Another Example

Elimination order: C, B, D, F, E, A

Another Example

Elimination order: C, B, D, F, E, A

Another Example

Elimination order: C, B, D, F, E, A

Another Example

Elimination order: C, B, D, F, E, A

Treewidth

- The treewidth of a graph is equal to the size of the largest clique created in any optimal elimination ordering
- Tree width of a tree: ?

Treewidth

- The treewidth of a graph is equal to the size of the largest clique created in any optimal elimination ordering
- Tree width of a tree: 1 (as long as it has at least one edge)
- The complexity of variable elimination is upper bounded by $\mathrm{n} \cdot$ (size of the state space $)^{\text {treewidth+1 }}$

What is the Treewidth of this Graph?

What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A

What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A

What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A

What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A

What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A

What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A

What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A

What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A

What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A

What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A

What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A

What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A

What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A

Largest clique created had size two
(this is the best that we can do)

Elimination Orderings

- Finding the optimal elimination ordering is NP-hard!
- Heuristic methods are often used in practice
- Min-degree: the cost of a vertex is the number of neighbors it has in the current graph
- Min-fill: the cost of a vertex is the number of new edges that need to be added to the graph due to its elimination

Belief Propagation

- Efficient method for inference on a tree
- Represent the variable elimination process as a collection of messages passed between nodes in the tree
- The messages keep track of the potential functions produced throughout the elimination process

Belief Propagation

- $p\left(x_{1}, \ldots, x_{n}\right)=\prod_{i \in V} \phi_{i}\left(x_{i}\right) \prod_{(i, j) \in E} \psi_{i j}\left(x_{i}, x_{j}\right)$

$$
m_{i \rightarrow j}\left(x_{j}\right)=\sum_{x_{i}} \phi_{i}\left(x_{i}\right) \psi_{i j}\left(x_{i}, x_{j}\right) \prod_{k \in N(i) \backslash j} m_{k \rightarrow \mathrm{i}}\left(x_{i}\right)
$$

where $N(i)$ is the set of neighbors of node i in the graph

- Messages are passed in two phases: from the leaves up to the root and then from the root down to the leaves

Belief Propagation

- As an added bonus, BP allows you to efficiently compute the marginal probability over each single variable as well as the partition function
- Multiply the singleton potentials with all of the incoming messages
- Computing the normalization constant for this function gives the partition function of the model
- A similar strategy can be used whenever the factor graph is a tree
- Two types of messages: factor-to-variable and variable-to-factor

Belief Propagation

- What is the complexity of belief propagation on a tree with state space D ?

Belief Propagation

- What is the complexity of belief propagation on a tree with state space D ?

$$
O\left(n|D|^{2}\right)
$$

- What if we want to compute the MAP assignment instead of the partition function?

