CS 6347

Lecture 5

Exact Inference



Markov Random Fields (MIRFs)

« A Markovrandom field is an undirected graphical model
— Undirected graph ¢ = (V, E)
— One node for each random variable

— One potential function or "factor" associated with cliques, C,
of the graph

— Nonnegative potential functions represent interactions and
need not correspond to conditional probabilities (may not even
sum to one)




Markov Random Fields (MIRFs)

« A Markovrandom field is an undirected graphical model

— Corresponds to a factorization of the joint distribution
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Exact Inference
,ee e

e Computing the partition function and the MAP assignment are both
NP-hard in general

— Could use it to count independent sets or find the largest
independent set in a graph, etc.

— We could easily encode 3-SAT as a graphical model: computing
the number of satisfying assignments would solve the
satisfiability problem




Inference
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Inference
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Variable Elimination
_

e Choose an ordering of the random variables

e Sum the joint distribution over the variables one at a time in the
specified order exploiting the factorization where possible

— Each time a variable is eliminated, it creates a new potential that
is multiplied back in after removing the sum that generated this
potential
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Variable Elimination
I

 Whatis the cost of variable elimination on the chain?
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Variable Elimination
I

 Whatis the cost of variable elimination on the chain?

length of the chain X (size of state space)?
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Another Example

Elimination order: C,B, D, F, E, A

(worked out on the board)
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Another Example

Elimination order: C,B, D, F, E, A
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Another Example

Elimination order: C,B, D, F, E, A
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Another Example

Elimination order: C,B, D, F, E, A
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Another Example

Elimination order: C,B, D, F, E, A
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Another Example

Elimination order: C,B, D, F, E, A

21




Another Example

Q\a\a

Elimination order: C,B, D, F, E, A
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Another Example

Q\a\c

Elimination order: C,B, D, F, E, A
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Another Example

Elimination order: C,B, D, F, E, A
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Another Example

Elimination order: C,B, D, F, E, A

25




Another Example
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Elimination order: C,B, D, F, E, A
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Another Example
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Elimination order: C,B, D, F, E, A

27




Another Example

Elimination order: C,B, D, F, E, A
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Treewidth

* The treewidth of a graph is equal to the size of the largest clique
created in any optimal elimination ordering

— Tree width of a tree: ?
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Treewidt

* The treewidth of a graph is equal to the size of the largest clique
created in any optimal elimination ordering

— Tree width of a tree: 1 (aslong as it has at least one edge)

» The complexity of variable elimination is upper bounded by n - (size
of the state Space) treewidth+1
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What is the Treewidth of this Graph?
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What is the Treewidth of this Graph?

Elimination order: D, C,F, E, B, A
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What is the Treewidth of this Graph?

Elimination order: D, C,F, E, B, A

33




What is the Treewidth of this Graph?
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What is the Treewidth of this Graph?
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What is the Treewidth of this Graph?

Elimination order: D, C,F, E, B, A
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What is the Treewidth of this Graph?

Elimination order: D, C,F, E, B, A
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What is the Treewidth of this Graph?

B

Elimination order: D, C,F, E, B, A
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What is the Treewidth of this Graph?

B

Elimination order: D, C,F, E, B, A

39




What is the Treewidth of this Graph?

Elimination order: D, C,F, E, B, A
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What is the Treewidth of this Graph?

Elimination order: D, C,F, E, B, A
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What is the Treewidth of this Graph?
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Elimination order: D, C,F, E, B, A
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What is the Treewidth of this Graph?
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Elimination order: D, C,F, E, B, A
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What is the Treewidth of this Graph?

Elimination order: D, C,F, E, B, A

Largest clique created had size two
(this is the best that we can do)
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Elimination Orderings
-

* Finding the optimal elimination ordering is NP-hard!
e Heuristic methods are often used in practice

— Min-degree: the cost of a vertex is the number of neighbors it has
in the current graph

— Min-fill: the cost of a vertex is the number of new edges that need
to be added to the graph due to its elimination
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Belief Propagation
-

e Efficient method for inference on a tree

* Represent the variable elimination process as a collection of
messages passed between nodes in the tree

— The messages keep track of the potential functions produced
throughout the elimination process
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Belief Propagation

* p(xy, o, Xn) = [liey @i () g jyep ¥ij (X x5)
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where N (i) is the set of neighbors of node i in the graph

» Messages are passed in two phases: from the leaves up to the root
and then from the root down to the leaves
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Belief Propagation
-

e As an added bonus, BP allows you to efficiently compute the
marginal probability over each single variable as well as the partition
function

— Multiply the singleton potentials with all of the incoming
messages

— Computing the normalization constant for this function gives the
partition function of the model

» Asimilar strategy can be used whenever the factor graph is a tree

— Two types of messages: factor-to-variable and variable-to-factor

UT D
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Belief Propagation
I

* What s the complexity of belief propagation on a tree with state
space D?
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Belief Propagation

* What s the complexity of belief propagation on a tree with state
space D?

0(n|DI?)

* What if we want to compute the MAP assignment instead of the
partition function?
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