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Lecture 6

Approximate MAP Inference



Belief Propagation
-

e Efficient method for inference on a tree

* Represent the variable elimination process as a collection of
messages passed between nodes in the tree

— The messages keep track of the potential functions produced
throughout the elimination process




Belief Propagation

© p(xq, ., xp) = %Hiev ¢i(x) i jyeg Wij (xi x5)

m;_j (Xj) = 2 ¢i(xi)l/Jij (xi» xj) kell;[)\j My-i(x;)

where N (i) is the set of neighbors of node i in the graph

* Messages are passed in two phases: from the leaves up to the root
and then from the root down to the leaves




MAP Inference

* Compute the most likely assignment under the (conditional) joint
distribution

x* = argmaxp(x)
X

e (Can encode 3-SAT, maximum independent set problem, etc. as a
MAP inference problem




Max-Product

© p(xq, ., xp) = %Hiev ¢i(x) i jyeg Wij (xi x5)

mi_j (Xj) = ITE}X [Gbi(xi)lpij (xi» xj) mkei(xi)]

KEN(D\J

* (Guaranteed to produced the correct answer on a tree




Max-Product

* To construct the maximizing assignment, we look at the max-marginal
produced by the algorithm

1
wi(x;) = E(Pi(xi) l_[ My (X;)

keN(i)
* Lasttime, we argued that, on a tree,

i (x;) = max p(X1, -, X)
X1y Xi—1,Xi41,-9Xn




Reparameterization
I

* The messages passed in max-product can be used to construct a
reparameterization of the joint distribution

1
p(xy, oo, Xp) = Zl_[qbi(xi) 1_[ Vi (xi,x5)

eV (i,j)EE
and

i (%)
¢ (x;) 1_[ mk%i(xi)‘ 1_[ mi_,j(Xj)mjai(xi)

KEN(D) (i,))EE

1
P(X1, e, Xp) = El_[

LEV




Reparameterization
e

1 i (xi, %))
p(xl,...,xn) _El_[ d)i(xi) 1_[ mkei(xi)] 1_[ mi_)j(xj)mj_,i(xi)

iev keN (i) (i,j)EE

* Reparameterizations do not change the partition function, the MAP
solution, or the factorization of the joint distribution

— They just push "weight" around between the different factors

» Otherreparameterizations are possible/useful




Tree Reparameterization

On a tree, this reparameterization takes a special form

1 wij(xi, xj)
p(xy, e, Xp) = —,Hﬂi(xi) o
z' 11 (har i () (x)

u; is the max-marginal distribution of the i*" variable and y; ; is the
max-marginal distribution for the edge (i,j) € E

How to express u; ; as a function of the messages and the potential
functions?




MAP in General MRFs

e While max-product solves the MAP problem on trees, the MAP
problem in MRFs is, in general, intractable

— Don’t expect to be able to solve the problem exactly

— Will settle for “good” approximations

— Can use max-product messages as a starting point
 This is an active area of research

— Advances are constantly being made
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Upper Bounds

1
max p(xq, .,x,) < —‘ ‘max bi(x;) ‘ ‘ maXl/Jij(xi»xj)
xl,...,xn Z xl X .

. i X
LEV (i,j)EE
* This provides an upper bound on the optimization problem

— Do other reparameterizations provide better bounds?
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Duality

B Wi, %))
Lem) = | | max [¢i<xi> | | mk*im)] | ] mex i () myi ()

iev kKeN (i) (i,j)EE
* We construct a dual optimization problem
min L(m) = max p(x)
m X

* The dual problem is log-convex in the messages
L(m)SL(m")'=% > L(m + (1 — §)m")

Equivalently, log L(m) is a convex function
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Optimizing the Dual

S —
* Minimizing L(m)

— Block coordinate descent: improve the bound by changing only a
small subset of the messages at a time (usually look like
message-passing algorithms)

— Subgradient descent: variant of gradient descent for non-
differentiable functions

— Many more methods...
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Max-Sum Diffusion
_

e Canimprove the bound iteratively by looking at only the pieces of the
objective function involving the variable x; and forcing agreement

* Thatis, forall j € N(i), update m;;(x;) so that

x| P exs)
xj miﬁj(xj)mjﬁi(x

) =¢; (x;) HREN(i) My (%)
* Pickanewi € V and iterate this process

* This can only improve the bound but is not guaranteed to minimize it
(coordinate descent methods can “get stuck”)
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