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Approximate MAP Inference



Belief Propagation

• Efficient method for inference on a tree

• Represent the variable elimination process as a collection of 

messages passed between nodes in the tree

– The messages keep track of the potential functions produced 

throughout the elimination process
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Belief Propagation

• 𝑝 𝑥1, … , 𝑥𝑛 =
1

𝑍
 𝑖∈𝑉𝜙𝑖(𝑥𝑖) 𝑖,𝑗 ∈𝐸𝜓𝑖𝑗(𝑥𝑖 , 𝑥𝑗)

𝑚𝑖→𝑗 𝑥𝑗 = 

𝑥𝑖

𝜙𝑖 𝑥𝑖 𝜓𝑖𝑗 𝑥𝑖 , 𝑥𝑗  

𝑘∈𝑁 𝑖 ∖𝑗

𝑚𝑘→i(𝑥𝑖)

where 𝑁(𝑖) is the set of neighbors of node 𝑖 in the graph

• Messages are passed in two phases:  from the leaves up to the root 

and then from the root down to the leaves
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MAP Inference

• Compute the most likely assignment under the (conditional) joint 

distribution

𝑥∗ = argmax
𝑥
𝑝(𝑥)

• Can encode 3-SAT, maximum independent set problem, etc. as a 

MAP inference problem
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Max-Product

• 𝑝 𝑥1, … , 𝑥𝑛 =
1

𝑍
 𝑖∈𝑉𝜙𝑖(𝑥𝑖) 𝑖,𝑗 ∈𝐸𝜓𝑖𝑗(𝑥𝑖 , 𝑥𝑗)

𝑚𝑖→𝑗 𝑥𝑗 = max
𝑥𝑖
𝜙𝑖 𝑥𝑖 𝜓𝑖𝑗 𝑥𝑖 , 𝑥𝑗  

𝑘∈𝑁 𝑖 ∖𝑗

𝑚𝑘→i(𝑥𝑖)

• Guaranteed to produced the correct answer on a tree
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Max-Product

• To construct the maximizing assignment, we look at the max-marginal 

produced by the algorithm

𝜇𝑖 𝑥𝑖 =
1

𝑍
𝜙𝑖 𝑥𝑖  

𝑘∈N 𝑖

𝑚𝑘→𝑖(𝑥𝑖)

• Last time, we argued that, on a tree,

𝜇𝑖 𝑥𝑖 = max
𝑥1,…,𝑥𝑖−1,𝑥𝑖+1,…,𝑥𝑛

𝑝(𝑥1, … , 𝑥𝑛)
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Reparameterization

• The messages passed in max-product can be used to construct a 

reparameterization of the joint distribution

𝑝 𝑥1, … , 𝑥𝑛 =
1

𝑍
 

𝑖∈𝑉

𝜙𝑖(𝑥𝑖)  

𝑖,𝑗 ∈𝐸

𝜓𝑖𝑗(𝑥𝑖 , 𝑥𝑗)

and

𝑝 𝑥1, … , 𝑥𝑛 =
1

𝑍
 

𝑖∈𝑉

𝜙𝑖 𝑥𝑖  

𝑘∈𝑁(𝑖)

𝑚𝑘→𝑖(𝑥𝑖)  

𝑖,𝑗 ∈𝐸

𝜓𝑖𝑗 𝑥𝑖 , 𝑥𝑗

𝑚𝑖→𝑗 𝑥𝑗 𝑚𝑗→𝑖 𝑥𝑖
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Reparameterization

𝑝 𝑥1, … , 𝑥𝑛 =
1

𝑍
 

𝑖∈𝑉

𝜙𝑖 𝑥𝑖  

𝑘∈𝑁(𝑖)

𝑚𝑘→𝑖(𝑥𝑖)  

𝑖,𝑗 ∈𝐸

𝜓𝑖𝑗 𝑥𝑖 , 𝑥𝑗

𝑚𝑖→𝑗 𝑥𝑗 𝑚𝑗→𝑖 𝑥𝑖

• Reparameterizations do not change the partition function, the MAP 

solution, or the factorization of the joint distribution

– They just push "weight" around between the different factors

• Other reparameterizations are possible/useful
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Tree Reparameterization

• On a tree, this reparameterization takes a special form

𝑝 𝑥1, … , 𝑥𝑛 =
1

𝑍′
 

𝑖∈𝑉

𝜇𝑖(𝑥𝑖)  

𝑖,𝑗 ∈𝐸

𝜇𝑖𝑗(𝑥𝑖 , 𝑥𝑗)

𝜇𝑖 𝑥𝑖 𝜇𝑗(𝑥𝑗)

• 𝜇𝑖 is the max-marginal distribution of the 𝑖𝑡ℎ variable and 𝜇𝑖𝑗 is the 

max-marginal distribution for the edge 𝑖, 𝑗 ∈ 𝐸

• How to express 𝜇𝑖𝑗 as a function of the messages and the potential 

functions?
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MAP in General MRFs

• While max-product solves the MAP problem on trees, the MAP 

problem in MRFs is, in general, intractable

– Don’t expect to be able to solve the problem exactly

– Will settle for “good” approximations

– Can use max-product messages as a starting point

• This is an active area of research

– Advances are constantly being made
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Upper Bounds

max
𝑥1,…,𝑥𝑛
𝑝 𝑥1, … , 𝑥𝑛 ≤

1

𝑍
 

𝑖∈𝑉

max
𝑥𝑖
𝜙𝑖(𝑥𝑖)  

𝑖,𝑗 ∈𝐸

max
𝑥𝑖,𝑥𝑗
𝜓𝑖𝑗(𝑥𝑖 , 𝑥𝑗)

• This provides an upper bound on the optimization problem

– Do other reparameterizations provide better bounds?
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Duality

𝐿 𝑚 =
1

𝑍
 

𝑖∈𝑉

max
𝑥𝑖
𝜙𝑖 𝑥𝑖  

𝑘∈𝑁(𝑖)

𝑚𝑘→𝑖(𝑥𝑖)  

𝑖,𝑗 ∈𝐸

max
𝑥𝑖,𝑥𝑗

𝜓𝑖𝑗 𝑥𝑖 , 𝑥𝑗

𝑚𝑖→𝑗 𝑥𝑗 𝑚𝑗→𝑖 𝑥𝑖

• We construct a dual optimization problem

min
𝑚
𝐿(𝑚) ≥ max

𝑥
𝑝(𝑥)

• The dual problem is log-convex in the messages

𝐿 𝑚 𝛿𝐿 𝑚′ 1−𝛿 ≥ 𝐿(𝛿𝑚 + 1 − 𝛿 𝑚′)

Equivalently, log 𝐿(𝑚) is a convex function
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Optimizing the Dual

• Minimizing 𝐿(𝑚)

– Block coordinate descent:  improve the bound by changing only a 

small subset of the messages at a time (usually look like 

message-passing algorithms)

– Subgradient descent:  variant of gradient descent for non-

differentiable functions

– Many more methods...
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Max-Sum Diffusion

• Can improve the bound iteratively by looking at only the pieces of the 

objective function involving the variable 𝑥𝑖 and forcing agreement 

• That is, for all 𝑗 ∈ 𝑁(𝑖), update 𝑚𝑗𝑖(𝑥𝑖) so that

max
𝑥𝑗

𝜓𝑖𝑗 𝑥𝑖,𝑥𝑗

𝑚𝑖→𝑗 𝑥𝑗 𝑚𝑗→𝑖 𝑥𝑖
=𝜙𝑖 𝑥𝑖  𝑘∈𝑁(𝑖)𝑚𝑘→𝑖(𝑥𝑖)

• Pick a new 𝑖 ∈ 𝑉 and iterate this process

• This can only improve the bound but is not guaranteed to minimize it 

(coordinate descent methods can “get stuck”)
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