CS 6347

Lecture 7

Approximate MAP \& Lagrange Multipliers

Reparameterization

- The messages passed in max-product can be used to construct a reparameterization of the joint distribution

$$
\begin{gathered}
p\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{Z} \prod_{i \in V} \phi_{i}\left(x_{i}\right) \prod_{(i, j) \in E} \psi_{i j}\left(x_{i}, x_{j}\right) \\
\text { and }
\end{gathered}
$$

$$
p\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{Z} \prod_{i \in V}\left[\phi_{i}\left(x_{i}\right) \prod_{k \in N(i)} m_{k \rightarrow i}\left(x_{i}\right)\right] \prod_{(i, j) \in E} \frac{\psi_{i j}\left(x_{i}, x_{j}\right)}{m_{i \rightarrow j}\left(x_{j}\right) m_{j \rightarrow i}\left(x_{i}\right)}
$$

Reparameterization

$p\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{Z} \prod_{i \in V}\left[\phi_{i}\left(x_{i}\right) \prod_{k \in N(i)} m_{k \rightarrow i}\left(x_{i}\right)\right] \prod_{(i, j) \in E} \frac{\psi_{i j}\left(x_{i}, x_{j}\right)}{m_{i \rightarrow j}\left(x_{j}\right) m_{j \rightarrow i}\left(x_{i}\right)}$

- Reparameterizations do not change the partition function, the MAP solution, or the factorization of the joint distribution
- They just push "weight" around between the different factors

Upper Bounds

$$
\max _{x_{1}, \ldots, x_{n}} p\left(x_{1}, \ldots, x_{n}\right) \leq \frac{1}{Z} \prod_{i \in V} \max _{x_{i}} \phi_{i}\left(x_{i}\right) \prod_{(i, j) \in E} \max _{x_{i}, x_{j}} \psi_{i j}\left(x_{i}, x_{j}\right)
$$

- This provides an upper bound on the optimization problem
- Do other reparameterizations provide better bounds?

Duality

$$
L(m)=\frac{1}{Z} \prod_{i \in V} \max _{x_{i}}\left[\phi_{i}\left(x_{i}\right) \prod_{k \in N(i)} m_{k \rightarrow i}\left(x_{i}\right)\right] \prod_{(i, j) \in E} \max _{x_{i}, x_{j}}\left[\frac{\psi_{i j}\left(x_{i}, x_{j}\right)}{m_{i \rightarrow j}\left(x_{j}\right) m_{j \rightarrow i}\left(x_{i}\right)}\right]
$$

- We construct a dualoptimization problem

$$
\min _{m} L(m) \geq \max _{x} p(x)
$$

- Last time, we saw how to attempt to minimize L via coordinate descent

Integer Programming

- We can express the MAP problem as a 0,1 integer programming problem
- Convert a maximum of a product into a maximum of a sum by taking logs
- Introduce indicator variables, τ, to represent the chosen assignment

Integer Programming

- Introduce variables
$-\tau_{i}\left(x_{i}\right) \in\{0,1\}$ for each $i \in V$ and x_{i}
$-\tau_{i j}\left(x_{i}, x_{j}\right) \in\{0,1\}$ for each $(i, j) \in E$ and x_{i}, x_{j}
- The linear objective function is then

$$
\max _{\tau} \sum_{i \in V} \sum_{x_{i}} \tau_{i}\left(x_{i}\right) \log \phi_{i}\left(x_{i}\right)+\sum_{(i, j) \in E} \sum_{x_{i}, x_{j}} \tau_{i j}\left(x_{i}, x_{j}\right) \log \psi_{i j}\left(x_{i}, x_{j}\right)
$$

where the τ 's are required to satisfy certain marginalization conditions

Integer Programming

$$
\max _{\tau} \sum_{i \in V} \sum_{x_{i}} \tau_{i}\left(x_{i}\right) \log \phi_{i}\left(x_{i}\right)+\sum_{(i, j) \in E} \sum_{x_{i}, x_{j}} \tau_{i j}\left(x_{i}, x_{j}\right) \log \psi_{i j}\left(x_{i}, x_{j}\right)
$$

such that

$$
\begin{array}{ll}
\sum_{x_{i}} \tau_{i}\left(x_{i}\right)=1 & \text { For all } i \in V \\
\sum_{x_{j}} \tau_{i j}\left(x_{i}, x_{j}\right)=\tau_{i}\left(x_{i}\right) & \text { For all }(i, j) \in E, x_{i} \\
\tau_{i}\left(x_{i}\right) \in\{0,1\} & \text { For all } i \in V, x_{i} \\
\tau_{i j}\left(x_{i}, x_{j}\right) \in\{0,1\} & \text { For all }(i, j) \in E, x_{i}, x_{j}
\end{array}
$$

Integer Programming

$$
\max _{\tau} \sum_{i \in V} \sum_{x_{i}} \tau_{i}\left(x_{i}\right) \log \phi_{i}\left(x_{i}\right)+\sum_{(i, j) \in E} \sum_{x_{i}, x_{j}} \tau_{i j}\left(x_{i}, x_{j}\right) \log \psi_{i j}\left(x_{i}, x_{j}\right)
$$

such that

These
constraints
define the
vertices of
the marginal
polytope
(set of all
valid
marginal
distributions)

\sum_{x_{j}} \tau_{i j}\left(x_{i}, x_{j}\right)=\tau_{i}\left(x_{i}\right) \& For all(i, j) \in E, x_{i}

\tau_{i}\left(x_{i}\right) \in\{0,1\}

\tau_{i j}\left(x_{i}, x_{j}\right) \in\{0,1\} \& For all i \in V, x_{i}

\end{cases}\)

Linear Relaxation

- The integer program can be relaxed into a linear program by replacing the 0,1 integrality constraints with linear constraints
- This relaxed set of constraints forms the local marginal polytope
- The τ 's no longer correspond to an achievable marginal distribution, so we call them pseudo-marginals
- We call it a relaxation because the constraints have been relaxed: all solutions to the IP are contained as solutions of the LP
- Linear programming problems can be solved in polynomial time

Linear Relaxation

$$
\max _{\tau} \sum_{i \in V} \sum_{x_{i}} \tau_{i}\left(x_{i}\right) \log \phi_{i}\left(x_{i}\right)+\sum_{(i, j) \in E} \sum_{x_{i}, x_{j}} \tau_{i j}\left(x_{i}, x_{j}\right) \log \psi_{i j}\left(x_{i}, x_{j}\right)
$$

such that

$$
\begin{array}{ll}
\sum_{x_{i}} \tau_{i}\left(x_{i}\right)=1 & \text { For all } i \in V \\
\sum_{x_{j}} \tau_{i j}\left(x_{i}, x_{j}\right)=\tau_{i}\left(x_{i}\right) & \text { For all }(i, j) \in E, x_{i} \\
\tau_{i}\left(x_{i}\right) \in[0,1] & \text { For all } i \in V, x_{i} \\
\tau_{i j}\left(x_{i}, x_{j}\right) \in[0,1] & \text { For all }(i, j) \in E, x_{i}, x_{j}
\end{array}
$$

LP vs. Dual

- Both the LP relaxation and the dual $L(m)$ provide an upper bound on the MAP objective function
- That is, finding an optimal collection of messages is equivalent to finding the best pseudo-marginals
- In fact, they are equivalent optimization problems: this seems quite surprising because the problems look so different
- The proof uses the method of Lagrange multipliers (a standard mathematical technique to construct dual optimization problems)

General Optimization

$$
\min _{x \in \mathbb{R}^{n}} f_{0}(x)
$$

subject to:

$$
\begin{array}{ll}
f_{i}(x) \leq 0, & i=1, \ldots, m \\
h_{i}(x)=0, & i=1, \ldots, p
\end{array}
$$

Lagrangian

$$
L(x, \lambda, v)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} v_{i} h_{i}(x)
$$

- Incorporate constraints into a new objective function
- λ and v are vectors of Lagrange multipliers
- The Lagrange multipliers can be thought of as soft constraints

Duality

- Construct a dual function by minimizing the Lagrangian over the primal variables

$$
g(\lambda, v)=\inf _{x \in D} L(x, \lambda, v)
$$

- $g(\lambda, v)=-\infty$ whenever the Lagrangian is not bounded from below

Duality

- The dual has a number of important features
- It is always concave (even if the primal is not)
$-g(\lambda, v) \leq L(x, \lambda, v)$ for all $x \in D$
$-L(x, \lambda, v) \leq f_{0}(x)$ for any feasible $x, \lambda \geq 0$
- x is feasible if it satisfies all of the constraints
- Proof?
- This gives, $g(\lambda, v) \leq f_{0}(x)$ for all feasible $x, \lambda \geq 0, v$

Duality

- As before, we can find the best lower bound

$$
\sup _{\lambda \geq 0, v} g(\lambda, v)
$$

- This is called the dual problem
- The pair (λ, v) is called dual-feasible if $\lambda \geq 0$ and $g(\lambda, v)>$
$-\infty$

Some Examples

- Minimize $x^{2}+y^{2}$ subject to $x+y \geq 2$
- Minimize $x^{2}+y^{2}$ subject to $x+y \leq 3$
- Maximize $-x \log x-y \log y-z \log z$ subject to $x, y, z \geq 0$ and $x+y+z=1$

Weak \& Strong Duality

- In general, the optimal value of the dual is always a lower bound on the optimal value of the primal
- This property is called weak duality
- When the optimal values agree, we call it strong duality

Weak \& Strong Duality

- The difference between the primal optimal value and the dual optimal value is called the duality gap
- Certain conditions on the constraints and the objective function guarantee strong duality

Tightness of the MAP LP

- When is it that solving the MAP LP (or equivalently, the dual optimization) is the same as solving the integer programming problem?
- We say that there is no duality gap (or that the dual is tight) when this is the case
- The answer can be expressed as a structural property of the graph

