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Lecture 7

Approximate MAP & Lagrange Multipliers



Reparameterization

• The messages passed in max-product can be used to construct a 

reparameterization of the joint distribution

𝑝 𝑥1, … , 𝑥𝑛 =
1

𝑍
 

𝑖∈𝑉

𝜙𝑖(𝑥𝑖)  

𝑖,𝑗 ∈𝐸

𝜓𝑖𝑗(𝑥𝑖 , 𝑥𝑗)

and

𝑝 𝑥1, … , 𝑥𝑛 =
1

𝑍
 

𝑖∈𝑉

𝜙𝑖 𝑥𝑖  

𝑘∈𝑁(𝑖)

𝑚𝑘→𝑖(𝑥𝑖)  

𝑖,𝑗 ∈𝐸

𝜓𝑖𝑗 𝑥𝑖 , 𝑥𝑗

𝑚𝑖→𝑗 𝑥𝑗 𝑚𝑗→𝑖 𝑥𝑖
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Reparameterization

𝑝 𝑥1, … , 𝑥𝑛 =
1

𝑍
 

𝑖∈𝑉

𝜙𝑖 𝑥𝑖  

𝑘∈𝑁(𝑖)

𝑚𝑘→𝑖(𝑥𝑖)  

𝑖,𝑗 ∈𝐸

𝜓𝑖𝑗 𝑥𝑖 , 𝑥𝑗

𝑚𝑖→𝑗 𝑥𝑗 𝑚𝑗→𝑖 𝑥𝑖

• Reparameterizations do not change the partition function, the MAP 

solution, or the factorization of the joint distribution

– They just push "weight" around between the different factors
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Upper Bounds

max
𝑥1,…,𝑥𝑛
𝑝 𝑥1, … , 𝑥𝑛 ≤

1

𝑍
 

𝑖∈𝑉

max
𝑥𝑖
𝜙𝑖(𝑥𝑖)  

𝑖,𝑗 ∈𝐸

max
𝑥𝑖,𝑥𝑗
𝜓𝑖𝑗(𝑥𝑖 , 𝑥𝑗)

• This provides an upper bound on the optimization problem

– Do other reparameterizations provide better bounds?
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Duality

𝐿 𝑚 =
1

𝑍
 

𝑖∈𝑉

max
𝑥𝑖
𝜙𝑖 𝑥𝑖  

𝑘∈𝑁(𝑖)

𝑚𝑘→𝑖(𝑥𝑖)  

𝑖,𝑗 ∈𝐸

max
𝑥𝑖,𝑥𝑗

𝜓𝑖𝑗 𝑥𝑖 , 𝑥𝑗

𝑚𝑖→𝑗 𝑥𝑗 𝑚𝑗→𝑖 𝑥𝑖

• We construct a dual optimization problem

min
𝑚
𝐿(𝑚) ≥ max

𝑥
𝑝(𝑥)

• Last time, we saw how to attempt to minimize 𝐿 via coordinate 

descent
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Integer Programming

• We can express the MAP problem as a 0,1 integer programming 

problem

– Convert a maximum of a product into a maximum of a sum by 

taking logs

– Introduce indicator variables, 𝜏, to represent the chosen 

assignment
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Integer Programming

• Introduce variables 

– 𝜏𝑖 𝑥𝑖 ∈ {0,1} for each 𝑖 ∈ 𝑉 and 𝑥𝑖

– 𝜏𝑖𝑗 𝑥𝑖 , 𝑥𝑗 ∈ {0,1} for each 𝑖, 𝑗 ∈ 𝐸 and 𝑥𝑖 , 𝑥𝑗

• The linear objective function is then

max
𝜏
 

𝑖∈𝑉

 

𝑥𝑖

𝜏𝑖 𝑥𝑖 log𝜙𝑖 𝑥𝑖 +  

𝑖,𝑗 ∈𝐸

 

𝑥𝑖,𝑥𝑗

𝜏𝑖𝑗 𝑥𝑖 , 𝑥𝑗 log𝜓𝑖𝑗(𝑥𝑖 , 𝑥𝑗)

where the 𝜏's are required to satisfy certain marginalization conditions
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Integer Programming

max
𝜏
 

𝑖∈𝑉

 

𝑥𝑖

𝜏𝑖 𝑥𝑖 log𝜙𝑖 𝑥𝑖 +  

𝑖,𝑗 ∈𝐸

 

𝑥𝑖,𝑥𝑗

𝜏𝑖𝑗 𝑥𝑖 , 𝑥𝑗 log𝜓𝑖𝑗(𝑥𝑖 , 𝑥𝑗)

such that
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For all 𝑖 ∈ 𝑉

For all 𝑖, 𝑗 ∈ 𝐸, 𝑥𝑖

For all 𝑖 ∈ 𝑉, 𝑥𝑖

For all 𝑖, 𝑗 ∈ 𝐸, 𝑥𝑖 , 𝑥𝑗

 

𝑥𝑖

𝜏𝑖 𝑥𝑖 = 1

 

𝑥𝑗

𝜏𝑖𝑗(𝑥𝑖 , 𝑥𝑗) = 𝜏𝑖(𝑥𝑖)

𝜏𝑖 𝑥𝑖 ∈ {0,1}

𝜏𝑖𝑗 𝑥𝑖 , 𝑥𝑗 ∈ {0,1}



Integer Programming

max
𝜏
 

𝑖∈𝑉

 

𝑥𝑖

𝜏𝑖 𝑥𝑖 log𝜙𝑖 𝑥𝑖 +  

𝑖,𝑗 ∈𝐸

 

𝑥𝑖,𝑥𝑗

𝜏𝑖𝑗 𝑥𝑖 , 𝑥𝑗 log𝜓𝑖𝑗(𝑥𝑖 , 𝑥𝑗)

such that
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These 
constraints 
define the 
vertices of 
the marginal 
polytope
(set of all 
valid 
marginal 
distributions)

For all 𝑖 ∈ 𝑉

For all 𝑖, 𝑗 ∈ 𝐸, 𝑥𝑖

For all 𝑖 ∈ 𝑉, 𝑥𝑖

For all 𝑖, 𝑗 ∈ 𝐸, 𝑥𝑖 , 𝑥𝑗

 

𝑥𝑖

𝜏𝑖 𝑥𝑖 = 1

 

𝑥𝑗

𝜏𝑖𝑗(𝑥𝑖 , 𝑥𝑗) = 𝜏𝑖(𝑥𝑖)

𝜏𝑖 𝑥𝑖 ∈ {0,1}

𝜏𝑖𝑗 𝑥𝑖 , 𝑥𝑗 ∈ {0,1}



Linear Relaxation

• The integer program can be relaxed into a linear program by replacing 

the 0,1 integrality constraints with linear constraints

– This relaxed set of constraints forms the local marginal polytope

• The 𝜏’s no longer correspond to an achievable marginal 

distribution, so we call them pseudo-marginals

– We call it a relaxation because the constraints have been relaxed:  

all solutions to the IP are contained as solutions of the LP

• Linear programming problems can be solved in polynomial time

10



Linear Relaxation

max
𝜏
 

𝑖∈𝑉

 

𝑥𝑖

𝜏𝑖 𝑥𝑖 log𝜙𝑖 𝑥𝑖 +  

𝑖,𝑗 ∈𝐸

 

𝑥𝑖,𝑥𝑗

𝜏𝑖𝑗 𝑥𝑖 , 𝑥𝑗 log𝜓𝑖𝑗(𝑥𝑖 , 𝑥𝑗)

such that
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For all 𝑖 ∈ 𝑉

For all 𝑖, 𝑗 ∈ 𝐸, 𝑥𝑖

For all 𝑖 ∈ 𝑉, 𝑥𝑖

For all 𝑖, 𝑗 ∈ 𝐸, 𝑥𝑖 , 𝑥𝑗

 

𝑥𝑖

𝜏𝑖 𝑥𝑖 = 1

 

𝑥𝑗

𝜏𝑖𝑗(𝑥𝑖 , 𝑥𝑗) = 𝜏𝑖(𝑥𝑖)

𝜏𝑖 𝑥𝑖 ∈ [0,1]

𝜏𝑖𝑗 𝑥𝑖 , 𝑥𝑗 ∈ [0,1]



LP vs. Dual

• Both the LP relaxation and the dual 𝐿(𝑚) provide an upper bound on 

the MAP objective function

– That is, finding an optimal collection of messages is equivalent to 

finding the best pseudo-marginals

• In fact, they are equivalent optimization problems:  this seems quite 

surprising because the problems look so different

– The proof uses the method of Lagrange multipliers (a standard 

mathematical technique to construct dual optimization problems)
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General Optimization

min
𝑥∈ℝ𝑛
𝑓0(𝑥)

subject to:

𝑓𝑖 𝑥 ≤ 0, 𝑖 = 1,… ,𝑚
ℎ𝑖 𝑥 = 0, 𝑖 = 1,… , 𝑝



Lagrangian

𝐿 𝑥, 𝜆, 𝜈 = 𝑓0 𝑥 + 

𝑖=1

𝑚

𝜆𝑖𝑓𝑖 𝑥 + 

𝑖=1

𝑝

𝜈𝑖ℎ𝑖(𝑥)

• Incorporate constraints into a new objective function

• 𝜆 and 𝜈 are vectors of Lagrange multipliers

• The Lagrange multipliers can be thought of as soft constraints



Duality

• Construct a dual function by minimizing the Lagrangian over the 

primal variables

𝑔 𝜆, 𝜈 = inf
𝑥∈𝐷
𝐿(𝑥, 𝜆, 𝜈)

• 𝑔 𝜆, 𝜈 = −∞ whenever the Lagrangian is not bounded from below



Duality

• The dual has a number of important features

– It is always concave (even if the primal is not)

– 𝑔 𝜆, 𝜈 ≤ 𝐿(𝑥, 𝜆, 𝜈) for all 𝑥 ∈ 𝐷

– 𝐿 𝑥, 𝜆, 𝜈 ≤ 𝑓0(𝑥) for any feasible 𝑥, 𝜆 ≥ 0

• 𝑥 is feasible if it satisfies all of the constraints

• Proof?

– This gives, 𝑔 𝜆, 𝜈 ≤ 𝑓0(𝑥) for all feasible 𝑥, 𝜆 ≥ 0, 𝜈



Duality

• As before, we can find the best lower bound

sup
𝜆≥0,𝜈
𝑔(𝜆, 𝜈)

– This is called the dual problem

– The pair (𝜆, 𝜈) is called dual-feasible if 𝜆 ≥ 0 and 𝑔 𝜆, 𝜈 >
−∞



Some Examples

• Minimize 𝑥2 + 𝑦2 subject to 𝑥 + 𝑦 ≥ 2

• Minimize 𝑥2 + 𝑦2 subject to 𝑥 + 𝑦 ≤ 3

• Maximize −𝑥 log 𝑥 − 𝑦 log 𝑦 − 𝑧 log 𝑧 subject to 𝑥, 𝑦, 𝑧 ≥ 0 and 

𝑥 + 𝑦 + 𝑧 = 1



Weak & Strong Duality

• In general, the optimal value of the dual is always a lower bound on 

the optimal value of the primal

– This property is called weak duality

• When the optimal values agree, we call it strong duality



Weak & Strong Duality

• The difference between the primal optimal value and the dual optimal 

value is called the duality gap

• Certain conditions on the constraints and the objective function 

guarantee strong duality



Tightness of the MAP LP

• When is it that solving the MAP LP (or equivalently, the dual 

optimization) is the same as solving the integer programming 

problem?

– We say that there is no duality gap (or that the dual is tight) when 

this is the case

– The answer can be expressed as a structural property of the graph
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