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Lecture 7

Approximate MAP & Lagrange Multipliers



Reparameterization
I

* The messages passed in max-product can be used to construct a
reparameterization of the joint distribution

1
p(xy, oo, Xp) = Zl_[qbi(xi) 1_[ Vi (xi,x5)

eV (i,j)EE
and
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Reparameterization
e

1 i (xi, %))
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* Reparameterizations do not change the partition function, the MAP
solution, or the factorization of the joint distribution

— They just push "weight" around between the different factors




Upper Bounds

1
max p(xq, .,x,) < —‘ ‘max bi(x;) ‘ ‘ maXl/Jij(xi»xj)
xl,...,xn Z xl X .

. i X
LEV (i,j)EE
* This provides an upper bound on the optimization problem

— Do other reparameterizations provide better bounds?




Duality

B Wi, %))
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* We construct a dval/optimization problem

min L(m) = max p(x)
m X

e Lasttime, we saw how to attempt to minimize L via coordinate
descent




Integer Programming
N

* We can express the MAP problem as a 0,1 integer programming
problem

— Convert a maximum of a product into a maximum of a sum by
taking logs

— Introduce indicator variables, 7, to represent the chosen
assignment




Integer Programming
e

* Introduce variables
— 7;(x;) € {0,1}foreachi € V and x;
— 7;(x;,%;) € {0,1} foreach (i, j) € E and x;, x;

* The linear objective function is then

mgxzz T;(x;) log ¢ (x;) + z z 73 (%0 %) log ¥y (i, x7)

IEV x; (i,j)EE XiX

where the 7's are required to satisfy certain marginalization conditions




Integer Programming

mTaXE 2 7;(x;) log ¢ (x;) + z z 717 (%0, %) log ¥y (xi, %)

eV x; (i,j)EE Xi,Xj

such that

2 T;(x;) =1

2 T (%, %) = T:(%;)
7;(x;) € {0,1}
Tij(x,;,xj) (S {0,1}

Foralli e V

Forall (i,j) € E, x;

Foralli € V, x;

Forall (i) € E, x;, x;




Integer Programming

mTaXE 2 7;(x;) log ¢ (x;) + z z 717 (%0, %) log ¥y (xi, %)

eV x; (i,j)EE Xi,Xj

such that

—

These 2 T;(x;)) =1 Foralli e V

constraints

define the X
vertices of

the marginal v v — (1 Forall (i ) € E. x.
polytope — 2 Tl] (xl’ x]) Tl (xl) ( 1]) )y A
(set of all Xj

valid .

marginal 7;(x;) € {0,1} Foralli € V, x;

distributions)

Tij(xi'xj) (= {0’1} For all (l,]) € E, Xi, Xj




Linear Relaxation
-

* The integer program can be relaxed into a linear program by replacing
the 0,1 integrality constraints with linear constraints

— This relaxed set of constraints forms the local marginal polytope

* The 7’s no longer correspond to an achievable marginal
distribution, so we call them pseudo-marginals

— We call it a relaxation because the constraints have been relaxed:
all solutions to the IP are contained as solutions of the LP

* Linear programming problems can be solved in polynomial time
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Linear Relaxation

mTaXE 2 7;(x;) log ¢ (x;) + 2 z 73 (%0 %) log ¥y (xi, %)

eV x; (i,j)EE Xi,Xj

such that

z T;(x;) =1

z T (g, %) = (%)
7;(x;) € [0,1]
Tij(xi,Xj) (S [0,1]
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Foralli e IV

Forall (i,j) € E, x;

Foralli € V/, x;

Forall (i, ) € E, x;, x;




LP vs. Dual

 Both the LP relaxation and the dual L (m) provide an upper bound on
the MAP objective function

— Thatis, finding an optimal collection of messages is equivalent to
finding the best pseudo-marginals

 Infact, they are equivalent optimization problems: this seems quite
surprising because the problems look so different

— The proof uses the method of Lagrange multipliers (a standard
mathematical technique to construct dual optimization problems)
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General Optimization
I ——

min X
xE]R"fO( )

subject to:

fi(x) <0, i=1,..,m
hi(X) =0, [ =1, ey P




Lagrangian

m p
LAY = fol0) + ) Lfil) + ) viki(x)
=1 =1

* Incorporate constraints into a new objective function
e Aandv are vectors of Lagrange multipliers

* The Lagrange multipliers can be thought of as soft constraints




Duality

* Construct a dual function by minimizing the Lagrangian over the
primal variables

g4,v) = ;gg L(x,A,v)

* g(4,v) = —oco whenever the Lagrangian is not bounded from below




Duality

e The dual has a number of important features
— ltis always concave (even if the primal is not)
— g4, v) < L(x,A,v)forallx € D
— L(x,A,v) < fy(x) forany feasible x, A > 0
* x is feasible if it satisfies all of the constraints

* Proof?

— This gives, g(4,v) < f,(x) forall feasible x, 1 = 0, v




Duality

* As before, we can find the best lower bound

sup g(4,v)

A=0,v
— This is called the dual problem

— The pair (4, v) is called dual-feasible if A > 0 and g(4,v) >

— OO




Some Examples
I

 Minimize x? + y? subjecttox + y > 2

* Minimize x? + y? subjecttox + y < 3

* Maximize —x logx — ylogy — zlog z subjectto x, y,z = 0 and
x+y+z=1




Weak & Strong Duality

* In general, the optimal value of the dual is always a lower bound on
the optimal value of the primal

— This property is called weak duality

* When the optimal values agree, we call it strong duality




Weak & Strong Duality

» The difference between the primal optimal value and the dual optimal
value is called the duality gap

 Certain conditions on the constraints and the objective function
guarantee strong duality




Tightness of the MAP LP

* Whenis it that solving the MAP LP (or equivalently, the dual
optimization) is the same as solving the integer programming
problem?

— We say that there is no duality gap (or that the dual is tight) when
this is the case

— The answer can be expressed as a structural property of the graph
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