CS 6347

Lecture 8

Variational Methods



Approximate Marginal Inference
-

» Lastlecture: approximate MAP inference
— Reparamaterizations
— Linear programming over the local marginal polytope

* Approximate marginal inference (e.g., p(y;|x))

— Sampling methods (MCMC, etc.)

— Variational methods (loopy belief propagation, TRW, etc.)




KL Divergence
e

* Inorder to perform approximate marginal inference, we will try to find
distributions that approximate the true distribution

— ldeally, the marginals of the approximating distribution should be
easy to compute

* Forthis, we need a notion of closeness of distributions




KL Divergence

p(x)

D(pllg) = 2p<x> log 25

 (Called the Kullback-Leibler divergence
* D(p|lq) = 0 with equality if and onlyif p = g

* Notsymmetric, D(p|lq) # D(ql|p)




Jensen's Inequality

* Let f(x) beaconvexfunctionand a; = Osuchthat),;a; =1

> aif () = f (Z am-)

l l

» Useful inequality when dealing with convex/concave functions

* When does equality hold?




KL Divergence

D(p|lg) = Ep(x) logqﬁx;

* Suppose that we want to approximate the distribution p with some
other distribution g in some family of distributions Q

* Could minimize KL divergence in one of two ways

— argmin D
gmin D(pl[q)

— argmin D
gmin D(q||p)




KL Divergence

D(p|lg) = Ep(x) logqﬁx;

* Suppose that we want to approximate the distribution p with some
other distribution g in some family of distributions Q

* Could minimize KL divergence in one of two ways
— arg rqneicrzl D(p|lqg) Called the M-projection

_ I [
— arg ‘JIE‘SD(‘I”?’) Called the I-projection




KL Divergence

D(p|lg) = Ep(x) logqu;

* Suppose that we want to approximate the distribution p with some
other distribution g in some family of distributions Q

* Could minimize KL divergence in one of two ways
— arg mein D(p|lqg) As hard as the original inference problem

— arg ‘2{28 D(q||p) Potentially easier...




Variational Inference
e

« Let'sletp(x) = % [1c W.(x.) be the distribution that we want to
approximate with distribution g

D(qllp) = Z q(x) log Ex;
= Z g(x)logq(x) — z q(x)logp(x)
= —H(q) — z q(x) logp(x)
= —H(q) +logZ — z z q(x) logc(xc)
¥ T

= —H(g) +10gZ = ) » qc(xe) loghe(xo)
C xc




Variational Inference
.

« Let'sletp(x) = % [1c W.(x.) be the distribution that we want to
approximate with distribution g

D(allp) —qu og L5

= z q(x)logq(x) — z q(x)logp(x)
=—H(q) — z q(x) log p(x)

= —H(q) +logZ — z z q(x) log i, (x.) Where have we

seen this before?

= —H(q) + log Z@(Xc) log@
C Xxc
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MAP Integer Program

max Efi(xi)logd)i(xiﬂ 2 zfij(xi»xj)loglljij(xvxj)

X (i,j)EE xi,xj

such that

zTi(xi) =1 Foralli € V

X
z Tl-j(xl-,xj) — Ti(xl') For all (i;j) €L, x;
Xj
1;(x;) € {0,1} Foralli € V, x;
Tij(x,;,xj) € {0,1} For all (i;j) € E, x;, Xj
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Variational Inference
e

o Let'sletp(x) = % [1. ¥ (x.) be the distribution that we want to
approximate with distribution g

D(llp) = —H(@) +10gZ = ) > qc(xc) logwe(xe)
C xc

* Using the observation that the KL divergence is non-negative

logZ 2 H(@) + ) ) qc(x) logihe(xo)
C Xxc
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Variational Inference
,ee e

o Let'sletp(x) = %HC Y. (x.) be the distribution that we want to
approximate with distribution g

D(llp) = —H(@) +10gZ = ) > qc(xc) logwe(xe)
C xc

* Using the observation that the KL divergence is non-negative

logZ = H(@) + ) > qc(xc) logibe(xe)
C xc

— This lower bound holds for any g
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Variational Inference
e

o Let'sletp(x) = % [1. ¥ (x.) be the distribution that we want to
approximate with distribution g

D(llp) = —H(@) +10gZ = ) > qc(xc) logwe(xe)
C xc

* Using the observation that the KL di

ence is non-negative

logZ 2(H(@) + ) ) ac(rc) logipe(xe)
C Xxc

Maximizing this over g gives
equality
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Variational Inference

logZ 2 H(9) + ) ) qc(rc) loge(xo)
C Xxc

* Theright hand side is a concave function of g
* Despite that, this optimization problem is hard! (surprised?)

— Exponentially many distributions, g (x)
We need a more compact way to express them

— Computing the entropy is non-trivial
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Variational Inference

logZ 2 H(q) + ) ) qc(rc) loge(xo)
C Xxc

e Two kinds of methods that are used to deal with these difficulties

— Mean-field methods: assume that the approximating distribution
factorizes as q(x) o [[;ey qi (x;)

 Similaridea to naive Bayes

— Relaxation based methods: replace hard pieces of the
optimization with easier optimization problems

e Similar to the MAP IP -> MAP LP relaxation
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Relaxation Approach

logZ 2 H(9) + ) ) qc(rc) loge(xo)
C Xxc

* To handle the representation problem, we can use the same LP
relaxation trick that we did before

* Foreach t in the marginal polytope, we can rewrite the RHS as

logZ = H(®) + ) ) tc(xc) log (o)
C xc
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Relaxation Approach

logZ 2 H(9) + ) ) qc(rc) loge(xo)
C Xxc

* To handle the representation problem, we can use the same LP
relaxation trick that we did before

* Foreach t in the marginal polytope, we can rewrite the RHS as

l0g Z > o) log e e
C Xc

Maximum entropy over all T with
these marginals 18




Relaxation Approach

TEM

max H(D) + ) > 7c(xc) log e (xc)
C Xxc

* Marginal polytope, M, is intractable to optimize over

* Use the local polytope, T'!

Z Tc(xc) = 1;(x;) forallC,i €V

XC\i

ZTi(xi) =1forallieV

Xi
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Relaxation Approach

TET

max H(D) + ) ) 7c(xc) logie(xc)
C Xxc

* Even with the polytope relaxation, the optimization problem still
remains challenging as computing the entropy remains nontrivial

— We will need to approximate the entropy as well

— Forwhich distributions is it easy to compute the entropy?
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Tree Reparameterization

* On atree, the joint distribution factorizes in a special way

pij (xi, Xx;)
pi(x)p;(x;)

1
p(xy, oy Xp) = 7 1_[ pi (x;i)

IV (i,j)EE

* p; is the marginal distribution of the i‘" variable and p; j is the max-
marginal distribution for the edge (i,j) € E

» This applies to “clique trees” as well (i.e., when the factor graph is a
tree)
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Tree Reparameterization

* On atree, the joint distribution factorizes in a special way

1
(X1, e, X)) = ?1_[ pi(x;) 1_[ pCC(;CLC(iCl)

IEV C

* p; is the marginal distribution of the i*" variable and p; j is the max-
marginal distribution for the edge (i,j) € E

» This applies to “clique trees” as well (i.e., when the factor graph is a
tree)
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Entropy of a Tree
I

 Given this factorization, we can easily compute the entropy of a tree
structured distribution

Hrree = z z p; (x;) logp; (x;) — Z z pc(xc) log ZCC(;C(L)

eV Xx;

* This only depends on the marginals

» Use this as an approximation for general distributions!
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Bethe Free Energy

* Combining these two approximations gives us the so-called Bethe
free energy approximation

max Hy(7) + Z Z e (xc) 10g e (xc)

where

Hg(7) = 2 Z T; (%) log 7 (x;) — Z z Tc(xc) log Hri(:cgc)

lEV x;
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Bethe Free Energy

max Hy(7) + Z Z c(xc) 10g e (xc)

 This is not a concave optimization problem for general graphs
— ltis still difficult to maximize

— However, fixed points of loopy belief propagation correspond to
saddle points of this objective over the local marginal polytope

(Homework?)
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