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Lecture 8

Variational Methods



Approximate Marginal Inference

• Last lecture:  approximate MAP inference

– Reparamaterizations

– Linear programming over the local marginal polytope

• Approximate marginal inference (e.g., 𝑝(𝑦𝑖|𝑥))

– Sampling methods (MCMC, etc.)

– Variational methods (loopy belief propagation, TRW, etc.)
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KL Divergence

• In order to perform approximate marginal inference, we will try to find 

distributions that approximate the true distribution

– Ideally, the marginals of the approximating distribution should be 

easy to compute

• For this, we need a notion of closeness of distributions
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KL Divergence

𝐷(𝑝| 𝑞 = 

𝑥

𝑝 𝑥 log
𝑝 𝑥

𝑞 𝑥

• Called the Kullback-Leibler divergence

• 𝐷(𝑝| 𝑞 ≥ 0 with equality if and only if 𝑝 = 𝑞

• Not symmetric, 𝐷(𝑝| 𝑞 ≠ 𝐷(𝑞||𝑝)
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Jensen's Inequality

• Let 𝑓(𝑥) be a convex function and 𝑎𝑖 ≥ 0 such that  𝑖 𝑎𝑖 = 1

 

𝑖

𝑎𝑖𝑓(𝑥𝑖) ≥ 𝑓  

𝑖

𝑎𝑖𝑥𝑖

• Useful inequality when dealing with convex/concave functions

• When does equality hold?
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KL Divergence

𝐷(𝑝| 𝑞 = 

𝑥

𝑝 𝑥 log
𝑝 𝑥

𝑞 𝑥

• Suppose that we want to approximate the distribution 𝑝 with some 

other distribution 𝑞 in some family of distributions 𝑄

• Could minimize KL divergence in one of two ways

– argmin
𝑞∈𝑄
𝐷(𝑝||𝑞)

– argmin
𝑞∈𝑄
𝐷(𝑞||𝑝)
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KL Divergence

𝐷(𝑝| 𝑞 = 

𝑥

𝑝 𝑥 log
𝑝 𝑥

𝑞 𝑥

• Suppose that we want to approximate the distribution 𝑝 with some 

other distribution 𝑞 in some family of distributions 𝑄

• Could minimize KL divergence in one of two ways

– argmin
𝑞∈𝑄
𝐷(𝑝||𝑞)

– argmin
𝑞∈𝑄
𝐷(𝑞||𝑝)
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Called the M-projection

Called the I-projection



KL Divergence

𝐷(𝑝| 𝑞 = 

𝑥

𝑝 𝑥 log
𝑝 𝑥

𝑞 𝑥

• Suppose that we want to approximate the distribution 𝑝 with some 

other distribution 𝑞 in some family of distributions 𝑄

• Could minimize KL divergence in one of two ways

– argmin
𝑞∈𝑄
𝐷(𝑝||𝑞)

– argmin
𝑞∈𝑄
𝐷(𝑞||𝑝)
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As hard as the original inference problem

Potentially easier…



Variational Inference

• Let's let 𝑝 𝑥 =
1

𝑍
 𝑐𝜓𝑐 𝑥𝑐 be the distribution that we want to 

approximate with distribution 𝑞

𝐷(𝑞| 𝑝 = 

𝑥

𝑞 𝑥 log
𝑞 𝑥

𝑝 𝑥

= 

𝑥

𝑞 𝑥 log 𝑞(𝑥) − 

𝑥

𝑞 𝑥 log 𝑝 𝑥

= −𝐻(𝑞) − 

𝑥

𝑞 𝑥 log 𝑝 𝑥

= −𝐻(𝑞) + log 𝑍 − 

𝑥

 

𝐶

𝑞 𝑥 log𝜓𝑐 𝑥𝑐

= −𝐻(𝑞) + log 𝑍 − 

𝐶

 

𝑥𝐶

𝑞𝐶 𝑥𝐶 log𝜓𝑐 𝑥𝑐
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Variational Inference

• Let's let 𝑝 𝑥 =
1

𝑍
 𝑐𝜓𝑐 𝑥𝑐 be the distribution that we want to 

approximate with distribution 𝑞

𝐷(𝑞| 𝑝 = 

𝑥

𝑞 𝑥 log
𝑞 𝑥

𝑝 𝑥

= 

𝑥

𝑞 𝑥 log 𝑞(𝑥) − 

𝑥

𝑞 𝑥 log 𝑝 𝑥

= −𝐻 𝑞 − 

𝑥

𝑞 𝑥 log 𝑝 𝑥

= −𝐻 𝑞 + log 𝑍 − 

𝑥

 

𝐶

𝑞 𝑥 log𝜓𝑐 𝑥𝑐

= −𝐻 𝑞 + log 𝑍 − 

𝐶

 

𝑥𝐶

𝑞𝐶 𝑥𝐶 log𝜓𝑐 𝑥𝑐

10

Where have we 
seen this before?



MAP Integer Program

max
𝜏
 

𝑖∈𝑉

 

𝑥𝑖

𝜏𝑖 𝑥𝑖 log𝜙𝑖 𝑥𝑖 +  

𝑖,𝑗 ∈𝐸

 

𝑥𝑖,𝑥𝑗

𝜏𝑖𝑗 𝑥𝑖 , 𝑥𝑗 log𝜓𝑖𝑗(𝑥𝑖 , 𝑥𝑗)

such that
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For all 𝑖 ∈ 𝑉

For all 𝑖, 𝑗 ∈ 𝐸, 𝑥𝑖

For all 𝑖 ∈ 𝑉, 𝑥𝑖

For all 𝑖, 𝑗 ∈ 𝐸, 𝑥𝑖 , 𝑥𝑗

 

𝑥𝑖

𝜏𝑖 𝑥𝑖 = 1

 

𝑥𝑗

𝜏𝑖𝑗(𝑥𝑖 , 𝑥𝑗) = 𝜏𝑖(𝑥𝑖)

𝜏𝑖 𝑥𝑖 ∈ {0,1}

𝜏𝑖𝑗 𝑥𝑖 , 𝑥𝑗 ∈ {0,1}



Variational Inference

• Let's let 𝑝 𝑥 =
1

𝑍
 𝑐𝜓𝑐 𝑥𝑐 be the distribution that we want to 

approximate with distribution 𝑞

𝐷(𝑞| 𝑝 = −𝐻 𝑞 + log𝑍 − 

𝐶

 

𝑥𝐶

𝑞𝐶 𝑥𝐶 log𝜓𝑐 𝑥𝑐

• Using the observation that the KL divergence is non-negative

log 𝑍 ≥ 𝐻 𝑞 + 

𝐶

 

𝑥𝐶

𝑞𝐶 𝑥𝐶 log𝜓𝑐 𝑥𝑐
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Variational Inference

• Let's let 𝑝 𝑥 =
1

𝑍
 𝑐𝜓𝑐 𝑥𝑐 be the distribution that we want to 

approximate with distribution 𝑞

𝐷(𝑞| 𝑝 = −𝐻 𝑞 + log𝑍 − 

𝐶

 

𝑥𝐶

𝑞𝐶 𝑥𝐶 log𝜓𝑐 𝑥𝑐

• Using the observation that the KL divergence is non-negative

log 𝑍 ≥ 𝐻(𝑞) + 

𝐶

 

𝑥𝐶

𝑞𝐶 𝑥𝐶 log𝜓𝑐 𝑥𝑐

– This lower bound holds for any 𝑞

13



Variational Inference

• Let's let 𝑝 𝑥 =
1

𝑍
 𝑐𝜓𝑐 𝑥𝑐 be the distribution that we want to 

approximate with distribution 𝑞

𝐷(𝑞| 𝑝 = −𝐻 𝑞 + log𝑍 − 

𝐶

 

𝑥𝐶

𝑞𝐶 𝑥𝐶 log𝜓𝑐 𝑥𝑐

• Using the observation that the KL divergence is non-negative

log 𝑍 ≥ 𝐻 𝑞 + 

𝐶

 

𝑥𝐶

𝑞𝐶 𝑥𝐶 log𝜓𝑐 𝑥𝑐
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Maximizing this over 𝑞 gives 

equality



Variational Inference

log 𝑍 ≥ 𝐻(𝑞) + 

𝐶

 

𝑥𝐶

𝑞𝐶 𝑥𝐶 log𝜓𝑐 𝑥𝑐

• The right hand side is a concave function of 𝑞

• Despite that, this optimization problem is hard!  (surprised?)

– Exponentially many distributions, 𝑞 𝑥
We need a more compact way to express them

– Computing the entropy is non-trivial
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Variational Inference

log 𝑍 ≥ 𝐻(𝑞) + 

𝐶

 

𝑥𝐶

𝑞𝐶 𝑥𝐶 log𝜓𝑐 𝑥𝑐

• Two kinds of methods that are used to deal with these difficulties

– Mean-field methods:  assume that the approximating distribution 
factorizes as 𝑞 𝑥 ∝  𝑖∈𝑉 𝑞𝑖 𝑥𝑖

• Similar idea to naïve Bayes

– Relaxation based methods:  replace hard pieces of the 
optimization with easier optimization problems

• Similar to the MAP IP -> MAP LP relaxation
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Relaxation Approach

log 𝑍 ≥ 𝐻(𝑞) + 

𝐶

 

𝑥𝐶

𝑞𝐶 𝑥𝐶 log𝜓𝑐 𝑥𝑐

• To handle the representation problem, we can use the same LP 

relaxation trick that we did before

• For each 𝜏 in the marginal polytope, we can rewrite the RHS as

log 𝑍 ≥ 𝐻 𝜏 + 

𝐶

 

𝑥𝐶

𝜏𝐶 𝑥𝐶 log𝜓𝑐 𝑥𝑐
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Relaxation Approach

log 𝑍 ≥ 𝐻(𝑞) + 

𝐶

 

𝑥𝐶

𝑞𝐶 𝑥𝐶 log𝜓𝑐 𝑥𝑐

• To handle the representation problem, we can use the same LP 

relaxation trick that we did before

• For each 𝜏 in the marginal polytope, we can rewrite the RHS as

log 𝑍 ≥ 𝐻(𝜏) + 

𝐶

 

𝑥𝐶

𝜏𝐶 𝑥𝐶 log𝜓𝑐 𝑥𝑐
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Maximum entropy over all 𝜏 with 

these marginals



Relaxation Approach

max
𝜏∈M
𝐻 𝜏 + 

𝐶

 

𝑥𝐶

𝜏𝐶 𝑥𝐶 log𝜓𝑐 𝑥𝑐

• Marginal polytope, 𝑀, is intractable to optimize over

• Use the local polytope, 𝑇!

 

𝑥𝐶∖𝑖

𝜏𝐶 𝑥𝐶 = 𝜏𝑖 𝑥𝑖 𝑓𝑜𝑟 𝑎𝑙𝑙 𝐶, 𝑖 ∈ 𝑉

 

𝑥𝑖

𝜏𝑖 𝑥𝑖 = 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ 𝑉
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Relaxation Approach

max
𝜏∈𝐓
𝐻(𝜏) + 

𝐶

 

𝑥𝐶

𝜏𝐶 𝑥𝐶 log𝜓𝑐 𝑥𝑐

• Even with the polytope relaxation, the optimization problem still 

remains challenging as computing the entropy remains nontrivial

– We will need to approximate the entropy as well

– For which distributions is it easy to compute the entropy?
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Tree Reparameterization

• On a tree, the joint distribution factorizes in a special way

𝑝 𝑥1, … , 𝑥𝑛 =
1

𝑍′
 

𝑖∈𝑉

𝑝𝑖(𝑥𝑖)  

𝑖,𝑗 ∈𝐸

𝑝𝑖𝑗(𝑥𝑖 , 𝑥𝑗)

𝑝𝑖 𝑥𝑖 𝑝𝑗(𝑥𝑗)

• 𝑝𝑖 is the marginal distribution of the 𝑖𝑡ℎ variable and 𝑝𝑖𝑗 is the max-

marginal distribution for the edge 𝑖, 𝑗 ∈ 𝐸

• This applies to “clique trees” as well (i.e., when the factor graph is a 

tree)
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Tree Reparameterization

• On a tree, the joint distribution factorizes in a special way

𝑝 𝑥1, … , 𝑥𝑛 =
1

𝑍′
 

𝑖∈𝑉

𝑝𝑖(𝑥𝑖) 

𝐶

𝑝𝐶(𝑥𝐶)

 𝑖∈𝐶 𝑝𝑖 𝑥𝑖

• 𝑝𝑖 is the marginal distribution of the 𝑖𝑡ℎ variable and 𝑝𝑖𝑗 is the max-

marginal distribution for the edge 𝑖, 𝑗 ∈ 𝐸

• This applies to “clique trees” as well (i.e., when the factor graph is a 

tree)
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Entropy of a Tree

• Given this factorization, we can easily compute the entropy of a tree 

structured distribution

𝐻𝑇𝑟𝑒𝑒 = − 

𝑖∈V

 

𝑥𝑖

𝑝𝑖 𝑥𝑖 log 𝑝𝑖(𝑥𝑖) − 

𝐶

 

𝑥𝐶

𝑝𝐶 𝑥𝐶 log
𝑝𝐶(𝑥𝐶)

 𝑖∈𝐶 𝑝𝑖 𝑥𝑖

• This only depends on the marginals

• Use this as an approximation for general distributions!
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Bethe Free Energy

• Combining these two approximations gives us the so-called Bethe 

free energy approximation

max
𝜏∈𝐓
𝐻𝐵 𝜏 + 

𝐶

 

𝑥𝐶

𝜏𝐶 𝑥𝐶 log𝜓𝑐 𝑥𝑐

where

𝐻𝐵 𝜏 = − 

𝑖∈V

 

𝑥𝑖

𝜏𝑖 𝑥𝑖 log 𝜏𝑖(𝑥𝑖) − 

𝐶

 

𝑥𝐶

𝜏𝐶 𝑥𝐶 log
𝜏𝐶(𝑥𝐶)

 𝑖∈𝐶 𝜏𝑖 𝑥𝑖
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Bethe Free Energy

max
𝜏∈𝐓
𝐻𝐵 𝜏 + 

𝐶

 

𝑥𝐶

𝜏𝐶 𝑥𝐶 log𝜓𝑐 𝑥𝑐

• This is not a concave optimization problem for general graphs

– It is still difficult to maximize

– However, fixed points of loopy belief propagation correspond to 

saddle points of this objective over the local marginal polytope

(Homework?)
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