CS 6347

Lecture 9

Variational Methods
(Mean Field)



|-Projections

* Consider a general MRF
1
p(x) = 7 1_[ Yelxe)
C

* Consider approximate distributions g € @, and minimize the KL
divergence, or equivalently

H@) + Y aclec) log (o) ]
C xc

* This gives a lower bound on log Z, with equality ifp € Q

max
qeq




Bethe Free Energy

max Hy(7) + 2 2 c(xc) 10g e (xc)

where T is the local marginal polytope, and Hy is an approximate
entropy function

Tc(xc)
Hp(0) = = ) > 1 (x) logmi(ax:) - Zirﬂxcﬂog TS

lEV x;




Bethe Free Energy

» Local optima of the Bethe free energy are in correspondence with
fixed points of loopy belief propagation

— At convergence, we can extract approximate marginals from loopy
BP and plug them into the Bethe free energy to approximate Z

— How do we know that these approximate marginals are in the
local marginal polytope?




Bipartite Matchings

* Given a bipartite graph, a matching is a subset of the edges, M < E, such
that no vertex is incident to more than one edge in M

— A matching is perfect if every vertex is incident to exactly one edge in M

* Let's suppose we are given a positive vector of edge weights w and define
the weight of a matching to be the product of the edge weights that it
contains

* As an example of a general graphical model, let's construct a probability
distribution over a given graph G such that probability of a matching is
proportional to its weight

(done one the board)




Naive Mean Field

max
qeqQ

H@) + Y aclre) log e (xo) ]
C Xxc

 Instead of using the Bethe approximation, we could also restrict the
set Q to be sufficiently simple

— Need it to have a compact representation and a tractable entropy
function

* Onesimple, yet popular, choice is the so-called naive mean field

approximation
q(x) = HCIL'(XL')

LIEV




Naive Mean Field

q(x) = 1_[ q;(x;)

LIEV

e Assumes that the joint distribution factorizes over a completely
disconnected graph

 This distribution is compactly represented: we only need
|V|(size of the state space — 1) numbers

* The entropy of this distribution is easy to compute

H(q) = —2 Z q;(x;) log q; (x;)

eV x;
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Naive Mean Field

q(x) = 1_[ q;(x;)

i€V
* Marginal distributions are also easy to compute
qc(xc) = l—ICIi(xi)
ieC

* Plugging into the lower bound

logZ = — 2 z qi(x;) log q;(x;) + Z “—[ Qi(xi)] log(xc)

IEV x; C xc LieC




Naive Mean Field
I

max — Z Z qi(x;) log q;(x;) + Z Z [ l Qi(xi)] log . (xc)
lEC

IEV x;

such that

z q;(x;) =1, forallieV
Xj

qi(x;) =0, foralli €V, x;

This is NOT a concave optimization problem!




Naive Mean Field
I

max — Z Z qi(x;) log q;(x;) + Z Z [ l Qi(xi)] log . (xc)
lEC

IEV x;

such that

z q;(x;) =1, forallieV
Xj

qi(x;) =0, foralli €V, x;

Can construct a Lagrangian and apply coordinate ascent
(worked out on the board)
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Naive Mean Field
I

max — Z Z qi(x;) log q;(x;) + Z Z [ l Qi(xi)] log . (xc)
lEC

IEV x;

such that

z q;(x;) =1, forallieV
Xj

qi(x;) =0, foralli €V, x;

Equivalent to the Bethe free energy with additional constraint that
Tc(xc) = [liec Ti(xi)
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