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Lecture 10

Sampling Methods



Sampling vs. Variational Methods

• Sampling:

– Guaranteed to approach the correct answer in the limit

– Can be quite slow to converge

• Variational methods:

– Only approximate the true solution

– Possible to make them quite fast
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Sampling:  The Basics

𝑝 𝑥1, … , 𝑥𝑛 =
1

𝑍
 

𝐶

𝜓𝐶(𝑥𝐶)

• Idea:  if we could generate independent samples from 𝑝, we could 

use them to estimate the partition function, marginals, etc.

• A sample is an instantiation/assignment of a value for each of the 

random variables

𝑥𝑡 = (𝑥1
𝑡 , … , 𝑥𝑛

𝑡 )
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Sampling:  The Basics

𝑝 𝑥1, … , 𝑥𝑛 =
1

𝑍
 

𝐶

𝜓𝐶(𝑥𝐶)

• Given 𝑇 i.i.d. samples 𝑥1, … , 𝑥𝑇 drawn from the distribution 𝑝, we 

could estimate marginal probabilities

• But how do we generate samples from a distribution?
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• Let's begin with a simple example

– Suppose we want to sample from a univariate probability
distribution, 𝑞(𝑦), where 𝑦 ∈ {1, … , 𝑘}

– Sampling algorithm:

• Divide the unit interval into 𝑘 pieces corresponding to the 
probabilities 𝑞 1 , … , 𝑞(𝑘)

• Pick a random number 𝑧 in 0,1

• If 𝑧 is in the 𝑗𝑡ℎ box, return 𝑗

Sampling:  The Basics
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𝑞(𝑘 − 1)𝑞(1) 𝑞(2)
…

𝑞(𝑘)



• We can use the same idea to sample from (discrete) Bayesian 

networks

– Sample the variables one at a time, in topological order

– Because of the graph structure, we only have to sample from 

univariate (conditional) distributions!

Sampling:  Bayesian Networks
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Sampling:  Bayesian Networks
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A B

C

D

𝐴 𝑃(𝐴)

0 .3

1 .7

𝐵 𝑃(𝐵)

0 .4

1 .6

𝐴 𝐵 𝐶 𝑃(𝐶|𝐴, 𝐵)

0 0 0 .1

0 0 1 .9

0 1 0 .2

0 1 1 .8

1 0 0 0

1 0 1 1

1 1 0 .25

1 1 1 .75

𝐶 𝐷 𝑃(𝐷|𝐶)

0 0 .3

0 1 .7

1 0 .4

1 1 .6

random numbers:  0.8663, 0.0253, 0.1714, 0.8309



Monte Carlo Methods

• Express the estimation problem as the expectation of a random 

variable

𝐸𝑝 𝑓 𝑥 =  

𝑥

𝑓(𝑥) ⋅ 𝑝(𝑥)

• To estimate this expectation, draw samples 𝑥1, … , 𝑥𝑇 i.i.d. from 𝑝
and approximate the expectation as

 𝑓 =  

𝑡

𝑓 𝑥𝑡

𝑇
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Monte Carlo Methods

• Law of Large Numbers: as 𝑇 → ∞,

 

𝑡

𝑓 𝑥𝑡

𝑇
→ 𝐸𝑝 𝑓 𝑥

•  𝑓 is an unbiased estimator of 𝐸𝑝 𝑓 𝑥

• var(  𝑓) = var  𝑡
𝑓 𝑥𝑡

𝑇
=

var 𝑓 𝑥

𝑇

– More samples means less variance
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Sampling from Marginal Distributions

• Suppose that we have a joint distribution 𝑝(𝑥, 𝑦) and we would like 

to estimate 𝑝(𝑦)

– Express this as an expectation

𝑝 𝑦 =  

𝑥′,𝑦′

1𝑦′=𝑦 ⋅ 𝑝(𝑥′, 𝑦′)

– We can then use the previous sampling strategy to estimate this 

expectation (known as rejection sampling)
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Rejection Sampling

• Rejection sampling:

– To estimate 𝑝(𝑦), first draw samples from 𝑝(𝑥′, 𝑦′) and discard 

those for which yt ≠ 𝑦

– This process can fail miserably if 𝑝(𝑦) is very small

• Let 𝑧𝑡 be a random variable that indicates whether or not the 

𝑡𝑡ℎ sample from 𝑝(𝑥′, 𝑦′) was accepted

• 𝐸  𝑡=1
𝑇 𝑧𝑡 = 𝑇 ⋅ 𝑝(𝑦)
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Importance Sampling

• Introduce a proposal distribution 𝑞(𝑥) such that 𝑝 𝑥, 𝑦 > 0
implies that 𝑞 𝑥 > 0
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𝑝 𝑦 =  

𝑥

𝑝(𝑥, 𝑦)

=  

𝑥

𝑝(𝑥, 𝑦)
𝑞 𝑥

𝑞 𝑥

=  

𝑥

𝑝 𝑥, 𝑦

𝑞 𝑥
𝑞 𝑥

= 𝐸𝑞

𝑝 𝑥, 𝑦

𝑞 𝑥



Importance Sampling

• Draw samples from 𝑞(𝑥)

– Note that we can never generate a sample that occurs with 

probability zero

– Use the samples from 𝑞 to approximate 𝑝(𝑦)

𝑝 𝑦 ≈
1

𝑇
 

𝑡

𝑝 𝑥𝑡 , 𝑦

𝑞 𝑥𝑡
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Sampling:  Bayesian Networks
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A B

C

D

𝐴 𝑃(𝐴)

0 .3

1 .7

𝐵 𝑃(𝐵)

0 .4

1 .6

𝐴 𝐵 𝐶 𝑃(𝐶|𝐴, 𝐵)

0 0 0 .1

0 0 1 .9

0 1 0 .2

0 1 1 .8

1 0 0 0

1 0 1 1

1 1 0 .25

1 1 1 .75

𝐶 𝐷 𝑃(𝐷|𝐶)

0 0 .3

0 1 .7

1 0 .4

1 1 .6

Estimate 𝑝(𝐷 = 1) using 𝑞(𝐴, 𝐵, 𝐶) uniform over 𝐴, 𝐵, 𝐶



Importance Sampling

• The proposal distribution should be close as possible to 𝑝(𝑥|𝑦)

– Often, this requires knowing an analytic form of the distribution 𝑝

• If we had that, we wouldn't need to sample!

– Picking good proposal distribution is more "art" than 

science
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Sampling from Conditional Distributions

• Can we use the same ideas to sample from conditional distributions?

𝑝 𝑥 𝑦 =
 𝑧 𝑝 𝑥, 𝑦, 𝑧

𝑝 𝑦

– Using sampling to estimate the numerator and denominator can 

produce very bad estimates

• For example, if we over estimate the numerator and 

underestimate the denominator
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Normalized Importance Sampling

• Rewrite the conditional distribution as

𝑝 𝑥 𝑦 =
 𝑥′,𝑧 𝛿(𝑥′ = 𝑥)𝑝 𝑥′, 𝑦, 𝑧

 𝑥′,𝑧 𝑝 𝑥′, 𝑦, 𝑧

• Can use the same proposal distribution to sample from the 

numerator and the denominator

– Common random numbers reduce the variance
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Beyond Monte Carlo Methods

• All of the methods discussed so far can have serious limitations 

depending on the quantity being estimated

• Idea:  instead of having a single proposal distribution, why not have 

an adaptive proposal distribution that depends on the previous 

sample?

𝑞(𝑥|𝑥′) where 𝑥′ is the previous sample and 𝑥 is the new assignment to 

be sampled

– We’ll explore this class of proposals more next lecture…
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