CS 6347

Lecture 14-15

More Maximum Likelihood



Recap
_

* Lastweek: Introduction to maximum likelihood estimation
— MLE for Bayesian networks
» Optimal CPTs correspond to empirical counts
* Today: MLE for CRFs
* Announcements:

— HW 3 is available and due 3/11




Maximum Likelihood Estimation

 Given samples x1, ..., x™ from some unknown distribution with
parameters 6...

— The log-likelihood of the evidence is defined to be
logl(0) = Z logp(x™|0)
m

— Goal: maximize the log-likelihood




MLE for MRFs
e ——

e Let’s compute the MLE for MRFs that factor over the graph G as
1
p(x|0) = %Hc Ye(xc|0)
» The parameters 6 control the allowable potential functions

* Again, suppose we have samples x1, ..., x™ from some unknown
MRF of this form

log1(6) = [zz log t/)c(x’c'”lé?)] — MlogZ (0)
m C




MLE for MRFs
L

e Let’s compute the MLE for MRFs that factor over the graph G as
1
p(x]10) = —IlcYc(xc|0)

Z(0)
» The parameters 6 control the allowable potential functions

* Again, suppose we have samples x1, ..., x™ from some unknown
MRF of this form

log 1(8) = [ZZ log ¢c<x’c"|e>] —
m C

Z(0) couples all of the potential functions together!

Even computing Z(0) by itself was a challenging task...
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Conditional Random Fields
_

* Learning MRFs is quite restrictive
— Most “real” problems are really conditional models
 Example: image segmentation

— Represent a segmentation problem as a MRF over a two
dimensional grid

— Each x; is an binary variable indicating whether or not the pixel is
in the foreground or the background

— How do we incorporate pixel information?

* The potentials over the edge (i, j) of the MRF should depend
on x;, x; as well as the pixel information at nodes i and j

UT D
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Feature Vectors
_

» The pixel information is called a feature of the model

— Features will consist of more than just a scalar value (i.e., pixels, at the
very least, are vectors of RGBA values)

 Vector of features y (e.g., one vector of features y; foreachi € V)

— We think of the joint probability distribution as a conditional
distribution p(x|y, 0)

* This makes MLE even harder
— Samples are pairs (x1,y1), ..., (x™,y™)

— The feature vectors can be different for each sample: need to compute
Z(8,y™) inthe log-likelihood!

UT D



Log-Linear Models
e

* MLE seems daunting for MRFs and CRFs

— Need a nice way to parameterize the model and to deal with
features

» We often assume that the models are log-linear in the parameters

— Many of the models that we have seen so far can easily be
expressed as log-linear models of the parameters




Log-Linear Models

* Feature vectors should also be incorporated in a log-linear way

* The potential on the clique C should be a log-linear function of the
parameters

Yelxcly, 0) = exp((0, fc(xc, ¥)))
where

0, fc(xc,y)) = z O - fc(xc, ¥k
k

* Here, f is a feature map that takes a collection of feature vectors and
returns a vector the same size as 6




Log-Linear MRFs

e Over complete representation: one parameter for each clique C and choice
of Xc

1
px16) = | [exp@cxe)

C

— fc(xc) is a 0-1 vector that is indexed by C and x-whose only non-zero
component corresponds to 6. (x.)

* One parameter per clique

1
px16) = 7| [exp(6cfcxo))

C

— fc(xc) is avector that is indexed ONLY by C whose only non-zero
component corresponds to 0
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MLE for Log-Linear Models

1
Z(6,y)

p(ly,6) = 7| | exp(®, feCec, 1))
C

logl(8) = z [Z(H,fc(x’c”,ym»] —logZ(6,y™)
m C

= <Hz Z fe(x, ym)> — Z logZ(6,y™)
m C m
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MLE for Log-Linear Models

1
Z(6,y)

p(ly,6) = 7| | exp(®, feCec, 1))
C

logl(8) = z [Z(H,fc(x’c”,ym»] —logZ(6,y™)
m C

= <Hz Z fe(x, ym)> — Z logZ(6,y™)
m C m

J
Y Y

/)

Linear in 6 Depends non-linearly
on 6
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Concavity of MLE

We will show that log Z (0, y) is a convex function of 6...

Fix a distribution g (x|y)

D(qllp) = z q(x|y)log pC(I)(CT;’;)
= Z q(x|y) log q(x|y) — z q(x|y)logp(x|y, 6)
= —H(q) — z q(x|y) logp(x|y,0)
= —H(q) +logZ(6,y) — 2 z q(x|y)8, fe e, y))
X C

= —H(q) +logZ(8,y) — Z z qc(xcly)O, fe (xe, ¥))
C xc
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Concavity of MLE

logZ(0,y) = max
q

H(q) + 2 Z qc(xc|y)(0, fc(xc, ¥))
C Xxc

\ J
Y

Linearin @

 Ifafunction g(x,y) is convexin x for each y, then max g(x, y) is
y

convexin y

— Asaresult, log Z(6, y) is a convex function of 6
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MLE for Log-Linear Models

1
Z(6,y)

p(xly,0) =

logl(0) = z

m

= <Hz Z fe(x, ym)> — Z logZ(6,y™)
m C m

\ ) \ y
\ Y

1_[ exp({0, fc(xc, ¥)))
C

Zw,fc (x¢", ym)>] —logZ(6,y™)
C

Linear in @ Convexin @
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MLE for Log-Linear Models

—
1
p(xly,0) = 7o | | e, felee, 1))
’ C
logl(0) = z Zw,fc(x’g%ym»] —logZ(6,y™)
m C
= <9, z z fe(xch, y’")> - z logZ(6,y™)
m C m

Y
Concave in 6

Could optimize it using gradient ascent!
(need to compute Vglog Z(6,y))
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MLE via Gradient Ascent

e Whatis the gradient of the log-likelihood with respect to 67?

VglogZ(0,y™) =7

(worked out on board)
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MLE via Gradient Ascent

e Whatis the gradient of the log-likelihood with respect to 67?

79108 Z(6,y™) = Z D) pelrcly™ 0)fe (e, y™

m Xc

This is the expected value of the feature maps under the joint
distribution
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MLE via Gradient Ascent

* Whatis the gradient of the log-likelihood with respectto 6?

7plogl(6) = ) > (fc G y™ = ) peleely™ O)fe e ym>)
C m Xc

— To compute/approximate this quantity, we only need to
compute/approximate the marginal distributions p-(x.|y, 0)

— This requires performing marginal inference on a different model at
each step of gradient ascent!
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Moment Matching

* letf(x™,y™) = X fe(xc,y™)

 Setting the gradient with respect to 6 equal to zero and solving gives

D PG Y™ = ) ) pGely™, 0)fCoy™

* This condition is called moment matching and when the model is an
MRF instead of a CRF this reduces to

N Fam =Y plo)e

20




Moment Matching

* To better understand why this is called moment matching, consider a
log-linear MRF

1
p() = | |exp(0ctxe)
C

 Thatis, f-(x.) is avectorthatis indexed by C and x-whose only
non-zero component corresponds to 6. (x.)

* The moment matching condition becomes

1
MZ S(xc = x0Y) = pc(xc|0), for all C, x.
m
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Regularization in MLE

* Recall that we can also incorporate prior information about the
parameters into the MLE problem

— This involved solving an augmented MLE
[ [pemiow )
m

— What types of priors should we choose for the parameters?
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Regularization in MLE

* Recall that we can also incorporate prior information about the
parameters into the MLE problem

— This involved solving an augmented MLE
[ [pemiow )
m

— What types of priors should we choose for the parameters?

* Gaussian prior: p(8) « exp(—%xTZ_le + ufx)

* Uniform over [0,1]
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Regularization in MLE

* Recall that we can also incorporate prior information about the
parameters into the MLE problem

— This involved solving an augmented MLE

Gaussian prior with a

1 . .
m|g ——HTDHT diagonal covariance
| [pGm10) exp(—507Do™)
m

matrix all of whose
entries are equal to 4

— What types of priors should we choose for the parameters?

* Gaussian prior: p(8) « exp(—%HTZ‘leT + u’9)

* Uniform over [0,1]
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Regularization in MLE
N

* Recall that we can also incorporate prior information about the
parameters into the MLE problem

— This involved solving an augmented MLE

1 ' | 2
log‘ ‘p(meH) exp(—EHTDHT) = ZIng(me) _Ez 67
m L m i

_ m - /1 2
= E logp(x™|0) _EHHHZ
L m i
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Regularization in MLE
N

* Recall that we can also incorporate prior information about the
parameters into the MLE problem

— This involved solving an augmented MLE

1 ' | A~ ,
log‘ ‘p(meH) exp(—EQTDHT)= ZIng(me) _Ez 0
m L m i

_ m - A 2
= | togpx™io)| -5 l16113
) J

Known as ¥, regularization

26






Duality and MLE

logZ(60,y) = max
q

H@)+ Y Y qcCeely)o, fotee y»]
C xc

log 1(6) = <9, DD felal ym>> - > 10gZ(6,y™
m C

m

Plugging the first into the second gives:

logl(8) = <9, Z Z fe(xch, ym)> - Z max
m C m

H@™+) ) qé”(xc|ym><e,fccxc,ym>>]
C xc
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Duality and MLE

maxlogL(6) = max min, [<9 Z > <fc (e y™) - Z ag Cecly™f (xc,ym)>> - ; H(q™)

m

* Thisis called a minimax or saddle-point problem

* Recall that we ended up with similar looking optimization problems when
we constructed the Lagrange dual function

 When can we switch the order of the max and min?

— The function is linear in theta, so there is an advantage to swapping
the order
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Sion’s Minimax Theorem
,ee e

Let X be a compact convex subset of R™ and Y be a convex subset of R™
Let f be a real-valued function on X X Y such that

— f(x,-) is a continuous concave function over Y foreach x € X

— f (-, y) is a continuous convex function over X foreachy € Y

then

sup min f (x,y) = minsup f(x,y)
y X X oy
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Duality and MLE

meélqulf}_ilgM [<9»Z ; (fc(xén»ym) - Z qgl(xcwm)fc(xc»ym))) - ; H(q™)

xc

is equal to

. gigM max [<9, Z ; (fc (xchy™) — Z qct (xcly™) fe (xc, ym))> - ; H(q™)

xc

Solve for 6?
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Maximum Entropy

m
qg.l.?c)li’” 2 H(g™)
m

such that the moment matching condition is satisfied

D FEmY™ = ) Y q Y™™

and g1, ..., g™ are discrete probability distributions

* Instead of maximizing the log-likelihood, we could maximize the
entropy over all approximating distributions that satisfy the moment
matching condition

UT D
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MLE in Practice

* We can compute the partition function in linear time over trees using
belief propagation

— We can use this to learn the parameters of tree-structured models
* What if the graph isn’t a tree?

— Use variable elimination to compute the partition function (exact
but slow)

— Use importance sampling to approximate the partition function
(can also be quite slow; maybe only use a few samples?)

— Use loopy belief propagation to approximate the partition
function (can be bad if loopy BP doesn’t converge quickly)
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MLE in Practice

 Practical wisdom:

— If you are trying to perform some prediction task (i.e., MAP inference to
do prediction), then it is better to learn the “wrong model”

— Learning and prediction should use the same approximations
 What people actually do:

— Use a few iterations of loopy BP or sampling to approximate the
marginals

— Approximate marginals give approximate gradients (recall that the
gradient only depended on the marginals)

— Perform approximate gradient descent and hope it works
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MLE in Practice
I
e Otheroptions

— Replace the true entropy with the Bethe entropy and solve the
approximate dual problem

— Use fancier optimization techniques to solve the problem faster

* e.g., the method of conditional gradients
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