CS 6347

Lecture 16

Alternatives to MLE



Course Project
e
* Pickagroup (1-4) students

» Write a brief proposal and email it to me and Baoye
* Do the project
— Collect/find a dataset
— Build a graphical model
— Solve approximately/exactly some inference or learning task
* Demo the project for the class (~20 mins during last 2-3 weeks)
— Show your results

e Turnin a short write-up describing your project and results (due May 2)




Course Project
-

* Meet with me and/or Travis about two times (more if needed)

— We’ll help you get started and make sure you picked a hard/easy
enough goal

* Forone person:
— Pick a small data set (or generate synthetic data)

— Formulate a learning/inference problem using MRFs, CRFs, Bayesian
networks

— Example: SPAM filtering with a Bayesian network using the UCI
spambase data set (or other data sets)

— Compare performance across data sets and versus naive algorithms
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Course Project
-

* Forfour people:
— Pick a more complex data set

— The graphical model that you learn should be more complicated
than a simple Bayesian network

— ldeally, the project will involve both learning and prediction using
a CRF or an MRF (or a Bayesian network with hidden variables)

— Example: simple binary image segmentation or smallish images

— Be ambitious but cautious, you don’t want to spend a lot of time
formatting the data or worrying about feature selection




Course Project
-

 Lots of other projects are possible

— Read about, implement, and compare different approximate MAP
inference algorithms (loopy BP, tree-reweighted belief
propagation, max-sum diffusion)

— Compare different approximate MLE schemes on synthetic data

— Perform a collection of experiments to determine when the MAP
LP is tight across a variety of pairwise, non-binary MRFs

— If you are stuck, have a vague idea, ask me about it!




Course Project
-

* Whatyou need to do now
— Find some friends (you can post on Piazza if you need friends)
— Pick a project
— Email me and Baoye (with all of your group members cc’d) by

3/20

* Grade will be determined based on the demo, final report, and
project difficulty




Recap
o I

 Lastweek:
— MLE for MRFs and CRFs
* Today:

— Alternatives to MLE: Pseudolikelihood, piecewise likelihood,
discriminative based learning




Alternatives to MLE

 Exact MLE estimation is intractable

— To compute the gradient of the log-likelihood, we need to
compute marginals of the model

e Alternatives include

— Pseudolikelihood approximation to the MLE problem that relies
on computing only local probabilities

— For structured prediction problems, we could avoid likelihoods
entirely by minimizing a loss function that measures our
prediction error




Pseudolikelihood

* Consider a log-linear MRF p(x|0) = ﬁﬂc exp(0, fo(xc))

» Bythe chain rule, the joint distribution factorizes as
p(x|0) = Hp(xdxp w0 Xi—1,0)
i

 This quantity can be approximated by conditioning on all of the other
variables (called the pseudolikelihood)

p(x|0) = 1_[ p(Xi| X1 s Xi—1, Xig1s s X, 0)
i




Pseudolikelihood

» Using the independence relations from the MRF
p(10) ~ | | pCailan, 0)
i

* Only requires computing local probability distributions (typically
much easier)

— Does not require knowing Z (6)
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Pseudolikelihood

« Forsamples x!, ..., xM

l0g 2¢,(6) = ) ) logp(x{"|x3y, 0)
[

m

 This approximation is called the pseudolikelihood

— If the data is generated from a model of this form, then in the limit
of infinite data, maximizing the pseudolikelihood recovers the
true model parameters

— Can be much more efficient to compute than the log likelihood
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Pseudolikelihood
|

log€p,(0) = ZZlogp(xlmx,’\?,’(i),H)

m [A
_221 p(x™ x5(|0)
= 08 I m
ngp(xz xN(i)le)

= zz _logp(x?l:x%ﬂ@) - 1082 P(x{»x%)w)‘
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Pseudolikelihood

lOg’gpL(H) — Zz logp(x{nlxml)’g)
m i
=2210g P(x?l»xﬁl(i)W)
—i £ lefp(x{:xlr\?(i)le)
= 2 z logp(x{", x,’(?(i)|9) — 1082 p(x{,x}\’,"(i)|9)
m i x.{
< » fc<x’c">> . logz exp< W ACED

C:Jl Coi

Only involves summing over x;!
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Pseudolikelihood
|

log 25,(0) = » " log p(x{" |1}, 0)

m l
S p(xl" xi()|6)
_ 08 r.m
le{p(xl xN(i)le)

Concavein 8!
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Consistency of Pseudolikelihood
-

 Pseudolikelihood is a consistent estimator

— That s, in the limit of large data, it is exact if the true model
belongs to the family of distributions being modeled

2y exp(@, Yeoifc (xl' xgn\l)) Yeoifc (xl’ xcr.‘r{z)
Volpy, = c)——
oTPL 7 7 ly fe(xc) Zx{ exp(6, X¢o; fo(xi, xR ;)

m i |C>oi

=) [7 feGel) - Z POl 0) ) fe(x, xc\i)‘

m i Coi Coi

Can check that the gradient is zero in the limit of large dataif 6 = 6*
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Structured Prediction
_

1
Z(8,y)

Suppose we have a CRF, p(x|y, 8) = [1cexp({0, fc(xc, ¥))

* If goalisto compute argmax p(x|y), then MLE may be overkill
X

— We only care about classification error, not about learning the
correct marginal distributions as well

* Recall that the classification error is simply the expected number of
incorrect predictions made by the learned model on samples from the
true distribution

 [nstead of maximizing the likelihood, we can minimize the
classification error over the training set

16




Structured Prediction

 Forsamples (x1,y1), ..., (x™,y™), the (unnormalized)
classification error is

z 1{xme argmax,p(x|y™,0)}
m

* The classification error is zero when p(x™|y™, 0) = p(x|y™, 0)
for all x and m or equivalently

<9,ch(x2;",ym)> = <9»2fc(xc»ym)>
C C
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Structured Prediction

* Inthe exact case, this can be thought of as having a linear constraint
for each possible x and each y1, ..., y™

<9,Z[fc(x’cn,ym) — fe(xc,y™1) =0

C

* Any 0 that simultaneously satisfies each of these constraints will
guarantee that the classification error is zero

— As there are exponentially many constraints, finding such a @ (if
one even exists) is still a challenging problem

— If such a @ exists, we say that the problem is separable

18




Structured Perceptron Algorithm
e

* Inthe separable case, a straightforward algorithm can be designed
to for this task

e Choose an initial 6
 |terate until convergence
— Foreachm

* Choose x' € argmax,p(x|y™,0)

* Setf =0 + Yclfe(xty™) — fe(xe, y™)]
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Other Alternatives
_

* Piecewise likelihood uses the observation that Z (0) is a convex function of

o
7 (Z aT8T> < z arZ(67)

T T

— If Z(67) corresponds to a tree-structured distribution, then the upper
bound can be computed in polynomial time

— To do learning, we minimize the upper bound over 64, ..., 07

— Instead of using arbitrary T', the piecewise likelihood constructs an
upper bound on the objective function by summing over 6|~ obtained
by zeroing out all components of 6 except for those over the clique C
(not always possible)
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