

CS 6347

Lecture 17

Concave Entropy Approximations & Conditional Gradients

Maximum Entropy

$$\max_{q^1,\dots,q^m} \sum_m H(q^m)$$

such that the moment matching condition is satisfied

$$\sum_{m} f(x^m, y^m) = \sum_{m} \sum_{x} q^m(x|y^m) f(x, y^m)$$

 q^1, \dots, q^m are discrete probability distributions

and
$$f(x^m, y^m) = \sum_C f_C(x_C^m, y^m)$$

Regularized MLE

- L_2 regularizer with a constant λ
 - $-\lambda$ is unknown and is chosen by cross-validation

Regularized log-likelihood:

$$\left\langle \theta, \sum_{m} \sum_{C} f_{C}(x_{C}^{m}, y^{m}) \right\rangle - \sum_{m} \log Z(\theta, y^{m}) - \frac{\lambda}{2} \|\theta\|_{2}^{2}$$

Regularized maximum entropy:

$$\max_{q^1, \dots, q^m} \sum_{m} H(q^m) - \frac{1}{2\lambda} \left\| \sum_{m} f(x^m, y^m) - \sum_{m} \sum_{x} q^m(x|y^m) f(x, y^m) \right\|_2^2$$

Bethe Entropy

$$H_B(\tau) = -\sum_{i \in V} \sum_{x_i} \tau_i(x_i) \log \tau_i(x_i) - \sum_C \sum_{x_C} \tau_C(x_C) \log \frac{\tau_C(x_C)}{\prod_{k \in C} \tau_k(x_k)}$$

- au are pseudomarginals in the marginal polytope
- Not concave in general
 - Real entropy is concave
 - Can make it concave by "reweighting" some of the pieces

Concave Entropy Approximations

$$H_{\rho}(\tau) = -\sum_{i \in V} \sum_{x_i} \tau_i(x_i) \log \tau_i(x_i) - \sum_{C} \rho_C \sum_{x_C} \tau_C(x_C) \log \frac{\tau_C(x_C)}{\prod_{k \in C} \tau_k(x_k)}$$

$$= -\sum_{i \in V} \sum_{x_i} \left(1 - \sum_{C \supset i} \rho_C\right) \tau_i(x_i) \log \tau_i(x_i) - \sum_{C} \sum_{x_C} \tau_C(x_C) \log \tau_C(x_C)$$

- For each clique C, choose some real number $\rho_{\it C} \geq 0$
 - We can always choose the ρ such that the resulting approximation is concave
 - Use this as a surrogate for the true entropy

Reweighted Maximum Entropy

$$\max_{\tau^{1},...,\tau^{M}\in T}\sum_{m}H_{\rho}(\tau^{m})-\frac{1}{2\lambda}\left\|\sum_{m}f(x^{m},y^{m})-\sum_{m}\sum_{C}\sum_{x_{C}}\tau_{C}^{m}(x_{C}|y^{m})f_{C}(x_{C},y^{m})\right\|_{2}^{2}$$

- For appropriate choice of ρ this is a constrained concave optimization problem
- This approximate maximum entropy optimization problem is dual to an approximate MLE optimization problem where we approximate Z using the Bethe free energy with a concave entropy approximation
 - Note: duality holds when this problem is concave and you choose the same ρ for both max-entropy and MLE

Gradient Descent

- Let's suppose that we want to minimize a convex function f(x)
- Start with an initial point x^0

$$x^t = x^{t-1} - \gamma_t \nabla f(x^{t-1})$$

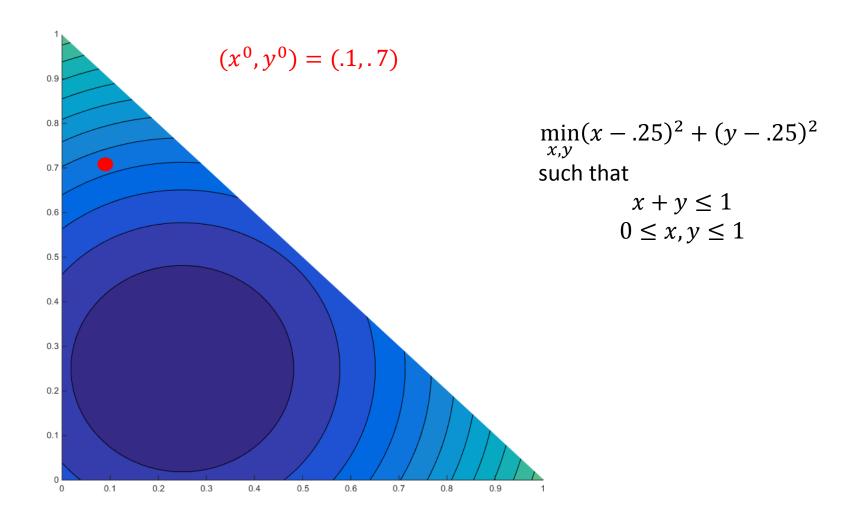
- $-\gamma_t$ is a step size
- Idea: step along a decreasing direction
- How do we maximize constrained concave functions?
 - Gradient ascent can step outside of the constraint set...
 - Projecting back in can be computationally expensive

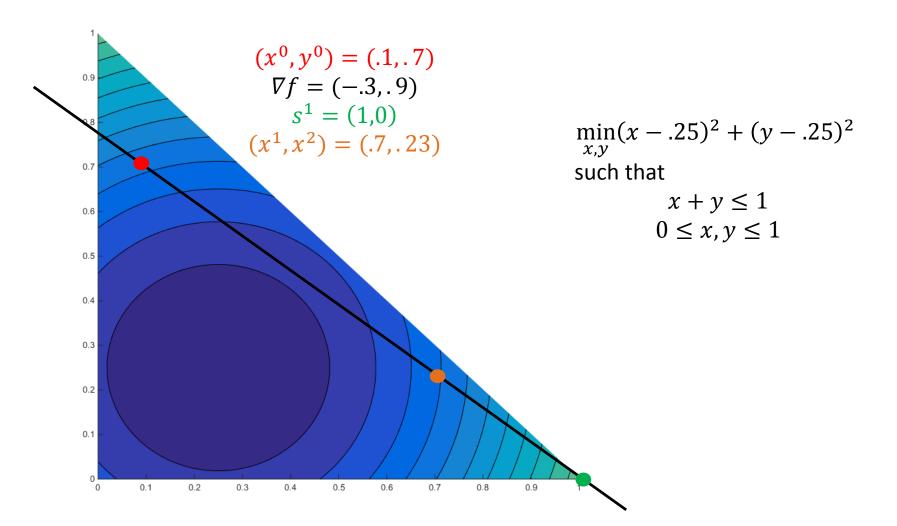
- Let's suppose that we want to minimize a convex function f(x) over a convex set S
 - Could take one step of gradient descent
 - If we end up outside of S, just project back in (can be computationally expensive)
- An alternative: the Frank-Wolfe algorithm
 - To minimize a convex function over a convex set, it suffices to solve a series of linear optimization problems

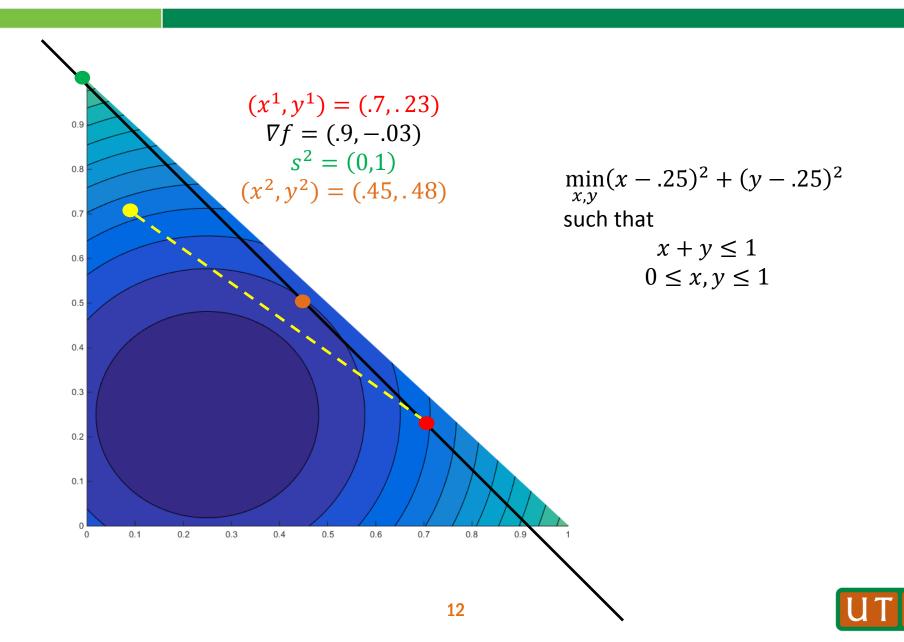
• Start with an initial point $x^0 \in S$

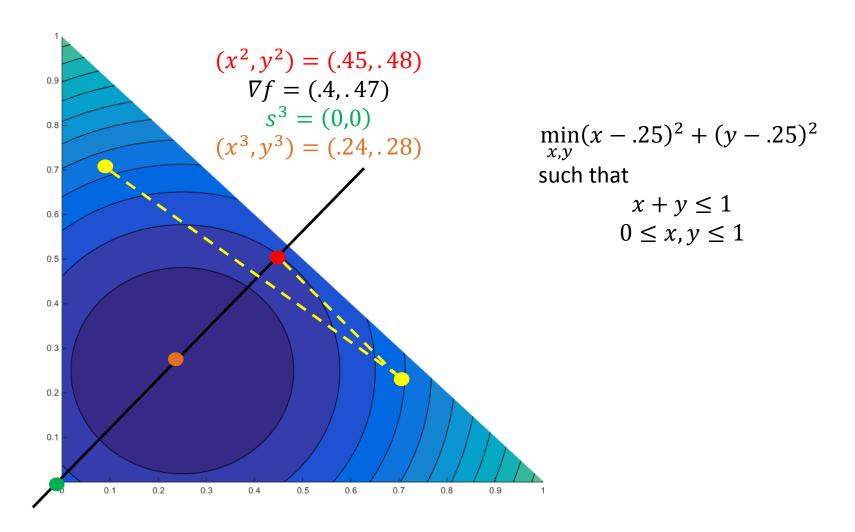
$$s^{t} = \arg\min_{x \in S} \langle x, \nabla f(x^{t-1}) \rangle$$
$$x^{t} = (1 - \gamma_{t})x^{t-1} + \gamma_{t}s^{t}$$

- γ_t is the step size
 - The algorithm is guaranteed to converge if $\gamma_t = \frac{2}{2+t}$
 - Other choices are also possible









Reweighted Maximum Entropy

$$Ent(\tau^{1},...,\tau^{M}) = \sum_{m} H_{\rho}(\tau^{m}) - \frac{1}{2\lambda} \left\| \sum_{m} f(x^{m}, y^{m}) - \sum_{m} \sum_{C} \sum_{x_{C}} \tau_{C}^{m}(x_{C}|y^{m}) f_{C}(x_{C}, y^{m}) \right\|_{2}^{2}$$

- To apply FW, need to compute the gradient with respect to τ^1 , ..., τ^M
- No matter what it ends up being, the optimization we need to solve is

$$\arg \max_{\mu^1, \dots, \mu^M \in T} \langle \mu, \nabla Ent(\tau^1, \dots, \tau^M) \rangle$$

- This is a linear programming problem over the local polytope
 - This means it corresponds to solving an approximate MAP problem!

MAP LP

$$\max_{\tau} \sum_{i \in V} \sum_{x_i} \tau_i(x_i) \log \phi_i(x_i) + \sum_{C} \sum_{x_C} \tau_C(x_C) \log \psi_C(x_C)$$

such that

$$\sum_{x_i} \tau_i(x_i) = 1$$

For all $i \in V$

$$\sum_{x_{C \setminus i}} \tau_C(x_C) = \tau_i(x_i)$$

For all $C, i \in C, x_i$

$$\tau_i(x_i) \in [0,1]$$

For all $i \in V$, x_i

$$\tau_C(x_C) \in [0,1]$$

For all C, x_C

Reweighted Maximum Entropy

$$Ent(\tau^{1},...,\tau^{M}) = \sum_{m} H_{\rho}(\tau^{m}) - \frac{1}{2\lambda} \left\| \sum_{m} f(x^{m}, y^{m}) - \sum_{m} \sum_{C} \sum_{x_{C}} \tau_{C}^{m}(x_{C}|y^{m}) f_{C}(x_{C}, y^{m}) \right\|_{2}^{2}$$

- Can solve this optimization problem just by solving a series of approximate MAP (linear programming problems)
 - Many general purpose solvers exist for LPs
 - Could use belief propagation!

Reweighted Sum-Product

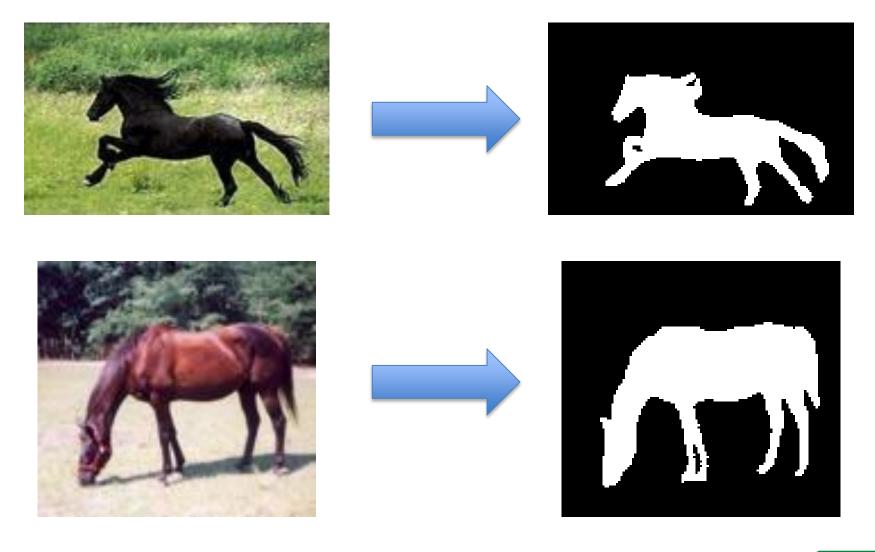
- We know that fixed points of loopy BP correspond to local optima of the Bethe free energy
- Is there an analog of sum-product for each choice of ρ ?
 - Yes!

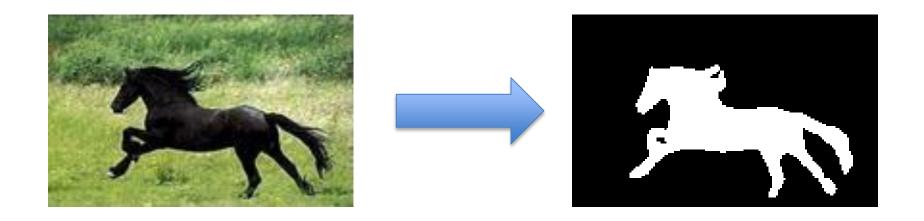
Reweighted Sum-Product

•
$$p(x_1, ..., x_n) = \frac{1}{Z} \prod_{i \in V} \phi_i(x_i) \prod_{(i,j) \in E} \psi_{ij}(x_i, x_j)$$

$$m_{i \to j}(x_j) = \sum_{x_i} \phi_i(x_i) \psi_{ij}(x_i, x_j)^{\frac{1}{\rho_{ij}}} \left[\frac{\prod_{k \in N(i)} m_{k \to i}(x_i)^{\rho_{ki}}}{m_{j \to i(x_i)}} \right]$$

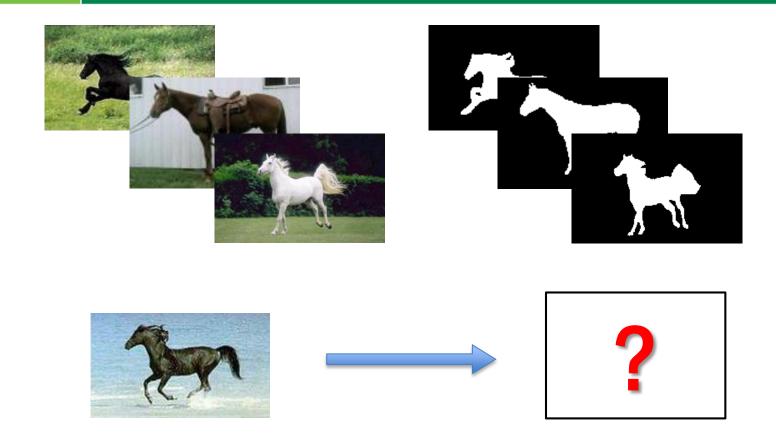
• $\rho = \vec{1}$ is equal to regular belief propagation





This image is 159x100 = 15,900 pixels

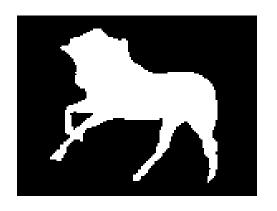
2^{15,900} different possible segmentations!



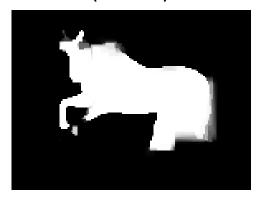
Given a set of labeled training examples, we want to learn the weights of an Ising model (with features) to correctly predict the segmentation of an unseen horse

Unseen Test Image

Ground Truth Segmentation

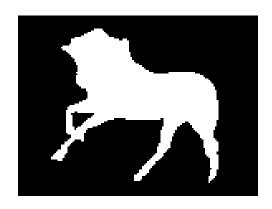


100 iterations (9 mins)



Unseen Test Image

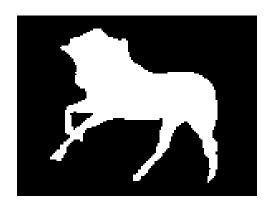
Ground Truth Segmentation



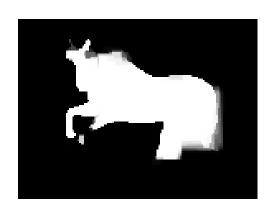
250 iterations

Unseen Test Image

Ground Truth Segmentation

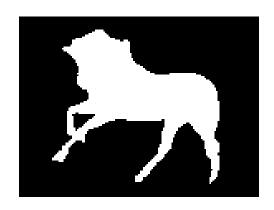


2,000 iterations



Unseen Test Image

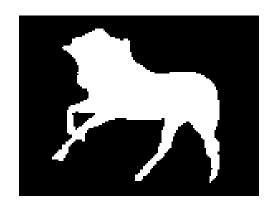
Ground Truth Segmentation



11,750 iterations

Unseen Test Image

Ground Truth Segmentation

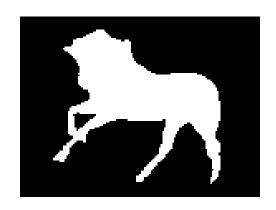


100,000 iterations



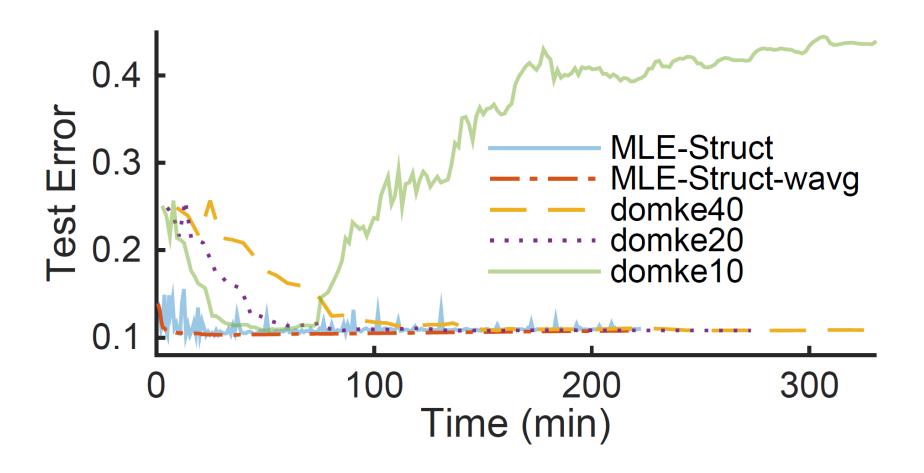
Unseen Test Image

Ground Truth Segmentation



250,000 iterations (3.7 hours)

Test Error Over Time



Hidden Variables

- So far, we've only considered the case where all of the variables in the model were fully observed
- How do we handle situations in which some of the variables are hidden?
- Given a MRF over observed variables x and hidden variables h, we can still write down the log-likelihood

$$\log \ell(\theta) = \sum_{m} \log p(x^{m}|\theta)$$
$$= \sum_{m} \sum_{h} \log p(x^{m}, h|\theta)$$

Hidden Variables

- So far, we've only considered the case where all of the variables in the model were fully observed
- How do we handle situations in which some of the variables are hidden?
- Given a MRF over observed variables x and hidden variables h, we can still write down the log-likelihood

$$\log \ell(\theta) = \sum_{m} \log p(x^{m}|\theta)$$

$$= \sum_{m} \sum_{h} \log p(x^{m}, h|\theta)$$
NOT concave in θ !

