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The Course

One of the most exciting advances in AI/ML in the last 

decade

Judea Pearl won the Turing award for his work on Bayesian 

networks!

(among other achievements)



Prob. Graphical Models

Exploit locality and structural features of a given model in 

order to gain insight about global properties



The Course

• What this course is:

– Probabilistic graphical models

– Topics:

• representing data

• exact and approximate statistical inference

• model learning

• variational methods in ML



The Course

• What you should be able to do at the end:

– Design statistical models for applications in your 

domain of interest

– Apply learning and inference algorithms to solve real 

problems (exactly or approximately)

– Understand the complexity issues involved in the 

modeling decisions and algorithmic choices



Prerequisites

• CS 5343:  Algorithm Analysis and Data Structures

• CS 3341:  Probability and Statistics in Computer Science 

and Software Engineering

• Basically, comfort with probability and algorithms 

(machine learning is helpful, but not required)



Textbook

Readings will be posted 

online before each lecture

Check the course website 

for additional resources and 

papers



Grading

• 4-6 problem sets (70%) 

– See collaboration policy on the web

• Final project (25%)

• Class participation & extra credit (5%)

-subject to change-



Course Info.

• Instructor:  Nicholas Ruozzi

– Office:  ECSS 3.409

– Office hours:  Tues. 11am - 12pm and by appointment

• TA:  TBD

– Office hours and location TBD

• Course website:  

http://www.utdallas.edu/~nrr150130/cs6347/2016sp/



Main Ideas

• Model the world (or at least the problem) as a collection of random 

variables related through some joint probability distribution

– Compactly represent the distribution

– Undirected graphical models

– Directed graphical models

• Learn the distribution from observed data

– Maximum likelihood, SVMs, etc.

• Make predictions (statistical inference)



Inference and Learning

Collect Data

“Learn” a model 

that represents the 

observed data

Use the model to 

do inference / make 

predictions

𝑍(𝜃) =  

𝑥

𝑝(𝑥; 𝜃)

11



Inference and Learning

Data sets can 

be large

Data must be 

compactly modeled

Inference needs to 

be fast

𝑍(𝜃) =  

𝑥

𝑝(𝑥; 𝜃)
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Applications

• Computer vision

• Natural language processing

• Robotics

• Computational biology

• Computational neuroscience

• Text translation

• Text-to-speech

• Many more…



Graphical Models

• A graphical model is a graph together with "local interactions"

• The graph and interactions model a global optimization or learning 

problem

• The study of graphical models is concerned with how to exploit local 

structure to solve these problems either exactly or approximately
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Probability Review



Discrete Probability

• Sample space specifies the set of possible outcomes

– For example, Ω = {H, T} would be the set of possible 

outcomes of a coin flip

• Each element 𝜔 ∈ Ω is associated with a number p 𝜔 ∈ [0,1]
called a probability

 

𝜔∈Ω

𝑝 𝜔 = 1

– For example, a biased coin might have 𝑝 𝐻 = .6 and 𝑝 𝑇 =
.4
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Discrete Probability

• An event is a subset of the sample space

– Let Ω = {1, 2, 3, 4, 5, 6} be the 6 possible outcomes of a dice 

role

– 𝐴 = 1, 5, 6 ⊆ Ω would be the event that the dice roll comes 

up as a one, five, or six

• The probability of an event is just the sum of all of the outcomes that 

it contains

– 𝑝 𝐴 = 𝑝 1 + 𝑝 5 + 𝑝(6)
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Independence

• Two events A and B are independent if 

𝑝 𝐴 ∩ 𝐵 = 𝑝 𝐴 𝑃(𝐵)

Let's suppose that we have a fair die:  𝑝 1 = … = 𝑝 6 = 1/6

If 𝐴 = {1, 2, 5} and 𝐵 = {3, 4, 6} are 𝐴 and 𝐵 indpendent?

1

2

5
3

6

4

𝐴 𝐵
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Independence

• Two events A and B are independent if 

𝑝 𝐴 ∩ 𝐵 = 𝑝 𝐴 𝑃(𝐵)

Let's suppose that we have a fair die:  𝑝 1 = … = 𝑝 6 = 1/6

If 𝐴 = {1, 2, 5} and 𝐵 = {3, 4, 6} are 𝐴 and 𝐵 indpendent?

1

2

5
3

6

4

𝐴 𝐵

No!

𝑝 𝐴 ∩ 𝐵 = 0 ≠
1

4
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Independence

• Now, suppose that Ω = { 1,1 , 1,2 ,… , 6,6 } is the set of all 

possible rolls of two unbiased dice

• Let 𝐴 = { 1,1 , 1,2 , 1,3 ,… , 1,6 } be the event that the first 

die is a one and let 𝐵 = { 1,6 , 2,6 ,… , 6,6 } be the event that 

the second die is a six

• Are 𝐴 and 𝐵 independent?

(1,1)

1,2

(1,3)

(1,4)

(1,5)
(1,6)

(3,6)

2,6

(4,6)

(5,6)

(6,6)

𝐴 𝐵
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Independence

• Now, suppose that Ω = { 1,1 , 1,2 ,… , 6,6 } is the set of all 

possible rolls of two unbiased dice

• Let 𝐴 = { 1,1 , 1,2 , 1,3 ,… , 1,6 } be the event that the first 

die is a one and let 𝐵 = { 1,6 , 2,6 ,… , 6,6 } be the event that 

the second die is a six

• Are 𝐴 and 𝐵 independent?

(1,1)
𝐴 𝐵

Yes!

𝑝 𝐴 ∩ 𝐵 =
1

36
=
1

6
∗
1

6

1,2

(1,3)

(1,4)

(1,5)
(1,6)

(3,6)

2,6

(4,6)

(5,6)

(6,6)
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Conditional Probability

• The conditional probability of an event 𝐴 given an event 𝐵
with 𝑝 𝐵 > 0 is defined to be

𝑝 𝐴 𝐵 =
𝑝 𝐴 ∩ 𝐵

𝑃 𝐵

• This is the probability of the event 𝐴 ∩ 𝐵 over the sample space 

Ω′ = 𝐵

• Some properties:

–  𝜔∈𝐵 𝑝(𝜔|𝐵) = 1

– If 𝐴 and 𝐵 are independent, then 𝑝 𝐴 𝐵 = 𝑝(𝐴)
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Simple Example

Cheated Grade Probability

Yes A .15

Yes F .05

No A .5

No F .3
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Chain Rule

𝑝 𝐴 ∩ 𝐵 = 𝑝 𝐴 𝑝 𝐵 𝐴

𝑝 𝐴 ∩ 𝐵 ∩ 𝐶 = 𝑝 𝐴 ∩ 𝐵 𝑝 𝐶 𝐴 ∩ 𝐵
= 𝑝 𝐴 𝑝 𝐵 𝐴 𝑝(𝐶|𝐴 ∩ 𝐵)

.

.

.

𝑝  

𝑖=1

𝑛

𝐴𝑖 = 𝑝 𝐴1 𝑝 𝐴2 𝐴1 …𝑝(𝐴𝑛|𝐴1 ∩⋯∩ 𝐴𝑛−1)
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Conditional Independence

• Two events 𝐴 and 𝐵 are independent if learning something about 𝐵
tells you nothing about 𝐴 (and vice versa)

• Two events 𝐴 and 𝐵 are conditionally independent given 𝐶 if 

𝑝 𝐴 ∩ 𝐵 𝐶 = 𝑝 𝐴 𝐶 𝑝(𝐵|𝐶)

• This is equivalent  to

𝑝 𝐴 𝐵 ∩ 𝐶 = 𝑝(𝐴|𝐶)

– That is, given 𝐶, information about 𝐵 tells you nothing about 𝐴
(and vice versa)
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Conditional Independence

• Let Ω = { 𝐻,𝐻 , 𝐻, 𝑇 , 𝑇, 𝐻 , 𝑇, 𝑇 } be the outcomes resulting 

from tossing two different fair coins

• Let 𝐴 be the event that the first coin is heads

• Let 𝐵 be the event that the second coin is heads

• Let 𝐶 be the even that both coins are heads or both are tails

• 𝐴 and 𝐵 are independent, but 𝐴 and 𝐵 are not independent given 𝐶
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Discrete Random Variables

• A discrete random variable, 𝑋, is a function from the state space Ω
into a discrete space 𝐷

– For each 𝑥 ∈ 𝐷,

𝑝 𝑋 = 𝑥 ≡ 𝑝 𝜔 ∈ Ω ∶ 𝑋 𝜔 = 𝑥

is the probability that 𝑋 takes the value 𝑥

– 𝑝(𝑋) defines a probability distribution

•  𝑥∈𝐷 𝑝(𝑋 = 𝑥) = 1

• Random variables partition the state space into disjoint events
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Example: Pair of Dice

• Let Ω be the set of all possible outcomes of rolling a pair of dice

• Let 𝑝 be the uniform probability distribution over all possible 

outcomes in Ω

• Let 𝑋 𝜔 be equal to the sum of the value showing on the pair of dice 

in the outcome 𝜔

– 𝑝 𝑋 = 2 = ?

– 𝑝 𝑋 = 8 = ? 
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Example: Pair of Dice

• Let Ω be the set of all possible outcomes of rolling a pair of dice

• Let 𝑝 be the uniform probability distribution over all possible 

outcomes in Ω

• Let 𝑋 𝜔 be equal to the sum of the value showing on the pair of dice 

in the outcome 𝜔

– 𝑝 𝑋 = 2 =
𝟏

𝟑𝟔

– 𝑝 𝑋 = 8 = ? 
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Example: Pair of Dice

• Let Ω be the set of all possible outcomes of rolling a pair of dice

• Let 𝑝 be the uniform probability distribution over all possible 

outcomes in Ω

• Let 𝑋 𝜔 be equal to the sum of the value showing on the pair of dice 

in the outcome 𝜔

– 𝑝 𝑋 = 2 =
𝟏

𝟑𝟔

– 𝑝 𝑋 = 8 =
𝟓

𝟑𝟔
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Discrete Random Variables

• We can have vectors of random variables as well

𝑋 𝜔 = [𝑋1 𝜔 ,… , 𝑋𝑛 𝜔 ]

• The joint distribution is 𝑝 𝑋1 = 𝑥1, … , 𝑋𝑛 = 𝑥𝑛 is

𝑝(𝑋1 = 𝑥1 ∩⋯∩ 𝑋𝑛 = 𝑥𝑛)

typically written as

𝑝(𝑥1, … , 𝑥𝑛)

• Because 𝑋𝑖 = 𝑥𝑖 is an event, all of the same rules - independence, 

conditioning, chain rule, etc. - still apply
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Discrete Random Variables

• Two random variables 𝑋1 and 𝑋2 are independent if

𝑝 𝑋1 = 𝑥1, 𝑋2 = 𝑥2 = 𝑝 𝑋1 = 𝑥1 𝑝(𝑋2 = 𝑥2)

for all values of 𝑥1 and 𝑥2

• Similar definition for conditional independence

• The conditional distribution of 𝑋1 given 𝑋2 = 𝑥2 is

𝑝 𝑋1 𝑋2 = 𝑥2 =
𝑝 𝑋1, 𝑋2 = 𝑥2
𝑝 𝑋2 = 𝑥2

this means that this relationship holds for all choices of 𝑥1
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The Monty Hall Problem

1 2 3



Expected Value

• The expected value of a real-valued random variable 

is the weighted sum of its outcomes

𝐸 𝑋 =  

𝑥∈D

𝑝(𝑋 = 𝑑) ⋅ 𝑑

• Expected value is linear

𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸[𝑌]



Expected Value:  Lotteries

• Powerball Lottery currently has a grand prize of $1.4 

billon

• Odds of winning the grand prize are 1/292,201,338

• Tickets cost $2 each

• Expected value of the game 

=
−2 ⋅ 292,201,337

292,201,338
+
1,400,000,000 − 2

292,201,338
≈ $3



Variance

• The variance of a random variable measures its 

squared deviation from its mean

𝑣𝑎𝑟 𝑋 = 𝐸[ 𝑋 − 𝐸 𝑋 2]



Example: Independent Sets

• Let Ω be the set of all vertex subsets in a graph 𝐺 = (𝑉, 𝐸)

• Let 𝑝 be the uniform probability distribution over all independent sets 

in Ω

• Define for each v ∈ 𝑉 and each subset of vertices𝜔

𝑋𝑣 𝜔 = 1, if 𝑣 ∈ 𝜔 and 

𝑋𝑣 𝜔 = 0,          otherwise 

• 𝑝 𝑋𝑣 = 1 is the fraction of all independent sets in 𝐺 containing 𝑣

• 𝑝 𝑥1, … , 𝑥𝑛 ≠ 0 if and only if the 𝑥’s define an independent set
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Example: Independent Sets

Consider the graph on the left, with the 

sample space and probabilities from the 

last slide

• 𝑝 𝑋1 = 1, 𝑋2 = 0, 𝑋3 = 0, 𝑋4 = 1 = ?

• 𝑝 𝑋1 = 0, 𝑋2 = 1, 𝑋3 = 1, 𝑋4 = 0 = ?

• 𝑝 𝑋1 = 1 = ?

1

3 4

2
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Example: Independent Sets

• How large of a table is needed to store the joint distribution 𝑝 𝑋𝑉
for a given graph 𝐺 = (𝑉, 𝐸)? 
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Example: Independent Sets

• How large of a table is needed to store the joint distribution 𝑝 𝑋𝑉
for a given graph 𝐺 = (𝑉, 𝐸)? 

𝟐 𝑽 -1
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Structured Distributions

• Consider a general joint distribution 𝑝(𝑋1, … , 𝑋𝑛) over binary 

valued random variables

• If 𝑋1, … , 𝑋𝑛 are all independent random variables, then

𝑝 𝑥1, … , 𝑥𝑛 = 𝑝 𝑥1 …𝑝(𝑥𝑛)

• How much information is needed to store the joint distribution?
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Structured Distributions

• Consider a general joint distribution 𝑝(𝑋1, … , 𝑋𝑛) over binary 

valued random variables

• If 𝑋1, … , 𝑋𝑛 are all independent random variables, then

𝑝 𝑥1, … , 𝑥𝑛 = 𝑝 𝑥1 …𝑝(𝑥𝑛)

• How much information is needed to store the joint distribution?

𝒏 numbers

• This model is boring:  knowing the value of any one variable tells you 

nothing about the others
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Structured Distributions

• Consider a general joint distribution 𝑝(𝑋1, … , 𝑋𝑛) over binary 

valued random variables

• If 𝑋1, … , 𝑋𝑛 are all independent given a different random variable 𝑌, 

then

𝑝 𝑥1, … , 𝑥𝑛|𝑦 = 𝑝 𝑥1|𝑦 …𝑝 𝑥𝑛 𝑦

and

𝑝 𝑦, 𝑥1, … , 𝑥𝑛 = 𝑝(𝑦)𝑝 𝑥1|𝑦 …𝑝(𝑥𝑛|𝑦)

• These models turn out to be surprisingly powerful, despite looking 

nearly identical to the previous case!
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Marginal Distributions

• Given a joint distribution 𝑝(𝑋1, … , 𝑋𝑛), the marginal distribution 

over the 𝑖𝑡ℎrandom variable is given by

𝑝𝑖 𝑋𝑖 = 𝑥𝑖 = 

𝑥1

 

𝑥2

… 

𝑥𝑖−1

 

𝑥𝑖+1

… 

𝑥𝑛

𝑝(𝑋1 = 𝑥1, … , 𝑋𝑛 = 𝑥𝑛)

• In general, marginal distributions are obtained by fixing some subset 

of the variables and summing out over the others

– This can be an expensive operation!
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Inference/Prediction

• Given fixed values of some subset, 𝐸, of the random variables, 

compute the conditional probability over the remaining variables, 𝑆

𝑝 𝑋𝑆 𝑋𝐸 = 𝑥𝐸 =
𝑝 𝑋𝑆, 𝑋𝐸 = 𝑥𝐸
𝑝 𝑋𝐸 = 𝑥𝐸

• This involves computing the marginal distribution 𝑝(𝑋𝐸 = 𝑥𝐸), so 

we refer to this as marginal inference
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Inference/Prediction

• Given fixed values of some subset, 𝐸, of the random variables, 

compute the most likely assignment of the remaining variables, 𝑆

argmax
𝑥𝑆
𝑝(𝑋𝑆 = 𝑥𝑠|𝑋𝐸 = 𝑥𝐸)

• This is called maximum a posteriori (MAP) inference

• We don’t need to do marginal inference to compute the MAP 

assignment, why not?
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