

#### CS 6347

#### Lecture 20

#### **Introduction to Structure Learning**

- We have been focusing on parameter learning:
  - E.g., given a graph structure, find the parameters that maximize the log-likelihood
- In practice, the structure of the graph may not be known and may need to be learned from the data
  - For Bayesian networks, we may be only given samples and asked to make predictions



 Recall that for a fixed Bayesian network with fully observed data, the MLE of the conditional probability tables was given by the empirical probabilities



| Α | В | С | D |
|---|---|---|---|
| 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 1 | 0 | 0 | 1 |
| 0 | 0 | 1 | 1 |



 Recall that for a fixed Bayesian network with fully observed data, the MLE of the conditional probability tables was given by the empirical probabilities



| Α | В | С | D |
|---|---|---|---|
| 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 1 | 0 | 0 | 1 |
| 0 | 0 | 1 | 1 |

|                    |                  |                           | Α                | В                | P(B A)                    |
|--------------------|------------------|---------------------------|------------------|------------------|---------------------------|
| Α                  | P                | (A)                       | 0                | 0                | 3/4                       |
| 0                  | 4                | l/5                       | 0                | 1                | 1/4                       |
| 1                  | 1                | ./5                       | 1                | 0                | 1                         |
|                    |                  |                           | 1                | 1                | 0                         |
|                    |                  |                           |                  |                  |                           |
|                    |                  |                           |                  |                  |                           |
| В                  | D                | P(D B)                    | Α                | С                | P(C A)                    |
| В<br>0             | D<br>0           | P(D B)<br>1/4             | A<br>0           | С<br>0           | P(C A)<br>1/4             |
| <b>B</b><br>0<br>0 | D<br>0<br>1      | P(D B)<br>1/4<br>3/4      | A<br>0<br>0      | C<br>0<br>1      | P(C A)<br>1/4<br>3/4      |
| B<br>0<br>0<br>1   | D<br>0<br>1<br>0 | P(D B)<br>1/4<br>3/4<br>1 | A<br>0<br>0<br>1 | C<br>0<br>1<br>0 | P(C A)<br>1/4<br>3/4<br>1 |



 Recall that for a fixed Bayesian network with fully observed data, the MLE of the conditional probability tables was given by the empirical probabilities



|   |   |      |        |   | Α | В | P(B A) |
|---|---|------|--------|---|---|---|--------|
| Α |   | P(A) |        |   | 0 | 0 | 3/4    |
| 0 |   | 4/5  |        |   | 0 | 1 | 1/4    |
| 1 |   | 1/5  |        |   | 1 | 0 | 1      |
|   |   |      |        |   | 1 | 1 | 0      |
|   |   |      |        |   |   |   |        |
| Α | D | )    | P(D A) | ) | Α | С | P(C A) |
| 0 | 0 | )    | 1/2    |   | 0 | 0 | 1/4    |
| 0 | 1 | -    | 1/2    |   | 0 | 1 | 3/4    |
| 1 | 0 | )    | 0      |   | 1 | 0 | 1      |
|   |   |      |        |   |   |   |        |





• Which model should be preferred?







• Which model should be preferred?





## Which one has the highest log-likelihood given the data?



• Which model should be preferred?





#### Which one has the highest log-likelihood given the data?



- Determining the structure that maximizes the log-likelihood is not too difficult
  - A complete DAG always maximizes the log-likelihood
  - This almost certainly results in overfitting
- Alternative is to attempt to learn simple structures
  - Approach 1: Optimize the log-likelihood over simple graphs
  - Approach 2: Add a penalty term to the log-likelihood



## Adding Edges Increases the MLE



Let p' be the empirical probability distribution

$$\frac{\ell_2 - \ell_1}{M} = \frac{1}{M} \sum_m \log \frac{p'(x_D^m | x_B^m, x_C^m)}{p'(x_D^m | x_B^m)}$$
$$= \sum_x p'(x_B, x_C, x_D) \log \frac{p'(x_D | x_B, x_C)}{p'(x_D | x_B)}$$
$$= \sum_x p'(x_B, x_C, x_D) \log \frac{p'(x_B, x_C, x_D)}{p'(x_C | x_B)p'(x_D | x_B)p'(x_B)}$$
$$= d(p'(x_B, x_C, x_D) ||p'(x_C | x_B)p'(x_D | x_B)p'(x_B)) \ge 0$$



- Suppose that we want to find the best tree-structured BN that represents a given joint probability distribution
  - Minimize the KL-divergence between the true distribution and the one given by the BN
- First, let's consider the infinite data limit
  - We want to find the directed tree T that minimizes

$$d\left(p(x)||\prod_{i} p(x_i|x_{parent(i\in T)})\right) = ?$$



$$d\left(p(x)||\prod_{i} p(x_i|x_{parent(i\in T)})\right) = -H(p) + \sum_{i} H(p_i) - \sum_{(i,j)\in T} I(x_i;x_j)$$

- $I(x_i; x_j) = \sum_{x_i, x_j} p(x_i, x_j) \log \frac{p(x_i, x_j)}{p(x_i)p(x_j)}$  is called the mutual information
  - Measures the dependence between two random variables
- Minimizing the KL-divergence over all directed trees is then equivalent to finding

$$\max_{T} \sum_{(i,j)\in T} I(x_i; x_j)$$



$$\max_{T} \sum_{(i,j)\in T} I(x_i; x_j)$$

- This problem can be solved by finding the maximum weight spanning tree in the complete graph with edge weight  $w_{ij}$  given by the mutual information over the edge (i, j)
  - Greedy algorithm works: at each step, pick the largest remaining edge that does not form a cycle when added to the already selected edges



- To use this technique for learning, we simply compute the mutual information for each edge using the empirical probability distributions and then find the max-weight spanning tree
  - Why does this maximize the log-likelihood?
- As a result, we can learn tree-structured BNs in polynomial time
  - Can we generalize this to all DAGs?



#### **Chow-Liu Trees: Example**



• Edge weights correspond to empirical mutual information for the earlier samples



#### **Chow-Liu Trees: Example**



• Edge weights correspond to empirical mutual information for the earlier samples



#### **Chow-Liu Trees: Example**



- Any directed tree (where each node has one parent) over these edges maximizes the log-likelihood
  - Why doesn't the direction matter?



## **Approach 2: Penalized Likelihood**

• Add a penalty term to the log-likelihood that can depend on the number of samples and the chosen structure

$$\ell(G,\theta) = \sum_{m} \log p_G(x^m|\theta) - \eta(M)Dim(G)$$

•  $\eta(M)$  is only a function of the number of samples

 $-\eta(M) = constant$  called the Akaike information criterion

$$-\eta(M) = \frac{\log(M)}{2}$$
 called the Bayesian information criterion

• Dim(G) is the number of parameters needed to represent G

