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Introduction to Structure Learning



Structure Learning

• We have been focusing on parameter learning:

– E.g., given a graph structure, find the parameters that maximize 
the log-likelihood

• In practice, the structure of the graph may not be known and may 
need to be learned from the data

– For Bayesian networks, we may be only given samples and asked 
to make predictions
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BN Structure Learning

• Recall that for a fixed Bayesian network  with fully observed data, the 
MLE of the conditional probability tables was given by the empirical 
probabilities

𝐴𝐴

𝐵𝐵

𝐷𝐷

𝐶𝐶

A B C D

0 0 1 0

0 0 1 1

0 1 0 0

1 0 0 1

0 0 1 1
3



BN Structure Learning

• Recall that for a fixed Bayesian network  with fully observed data, the 
MLE of the conditional probability tables was given by the empirical 
probabilities

𝐴𝐴

𝐵𝐵

𝐷𝐷

𝐶𝐶

A B C D

0 0 1 0

0 0 1 1

0 1 0 0

1 0 0 1

0 0 1 1

A P(A)

0 4/5

1 1/5

A B P(B|A)

0 0 3/4

0 1 1/4

1 0 1

1 1 0

A C P(C|A)

0 0 1/4

0 1 3/4

1 0 1

1 1 0

B D P(D|B)

0 0 1/4

0 1 3/4

1 0 1

1 1 0
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BN Structure Learning

• Recall that for a fixed Bayesian network  with fully observed data, the 
MLE of the conditional probability tables was given by the empirical 
probabilities

𝐴𝐴

𝐵𝐵𝐷𝐷 𝐶𝐶

A B C D

0 0 1 0

0 0 1 1

0 1 0 0

1 0 0 1

0 0 1 1

A P(A)

0 4/5

1 1/5

A B P(B|A)

0 0 3/4

0 1 1/4

1 0 1

1 1 0

A C P(C|A)

0 0 1/4

0 1 3/4

1 0 1

1 1 0

A D P(D|A)

0 0 1/2

0 1 1/2

1 0 0

1 1 1
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BN Structure Learning

• Which model should be preferred?

𝐴𝐴

𝐵𝐵

𝐷𝐷

𝐶𝐶

𝐴𝐴

𝐵𝐵𝐷𝐷 𝐶𝐶
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BN Structure Learning

• Which model should be preferred?

𝐴𝐴

𝐵𝐵

𝐷𝐷

𝐶𝐶

𝐴𝐴

𝐵𝐵𝐷𝐷 𝐶𝐶

Which one has the highest log-likelihood given 
the data?

7



BN Structure Learning

• Which model should be preferred?

𝐴𝐴

𝐵𝐵

𝐷𝐷

𝐶𝐶

𝐴𝐴

𝐵𝐵𝐷𝐷 𝐶𝐶

Which one has the highest log-likelihood given 
the data?
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BN Structure Learning

• Determining the structure that maximizes the log-likelihood is not too 
difficult

– A complete DAG always maximizes the log-likelihood

– This almost certainly results in overfitting

• Alternative is to attempt to learn simple structures

– Approach 1:  Optimize the log-likelihood over simple graphs

– Approach 2:  Add a penalty term to the log-likelihood
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Adding Edges Increases the MLE

Let 𝑝𝑝′ be the empirical probability distribution

ℓ2 − ℓ1
𝑀𝑀

=
1
𝑀𝑀
�
𝑚𝑚

log
𝑝𝑝𝑝 𝑥𝑥𝐷𝐷𝑚𝑚 𝑥𝑥𝐵𝐵𝑚𝑚, 𝑥𝑥𝐶𝐶𝑚𝑚

𝑝𝑝𝑝 𝑥𝑥𝐷𝐷𝑚𝑚 𝑥𝑥𝐵𝐵𝑚𝑚

= �
𝑥𝑥

𝑝𝑝′(𝑥𝑥𝐵𝐵 , 𝑥𝑥𝐶𝐶 , 𝑥𝑥𝐷𝐷) log
𝑝𝑝′(𝑥𝑥𝐷𝐷|𝑥𝑥𝐵𝐵 , 𝑥𝑥𝐶𝐶)
𝑝𝑝′(𝑥𝑥𝐷𝐷|𝑥𝑥𝐵𝐵)

= �
𝑥𝑥

𝑝𝑝′(𝑥𝑥𝐵𝐵 , 𝑥𝑥𝐶𝐶 , 𝑥𝑥𝐷𝐷) log
𝑝𝑝′(𝑥𝑥𝐵𝐵 , 𝑥𝑥𝐶𝐶 , 𝑥𝑥𝐷𝐷)

𝑝𝑝′ 𝑥𝑥𝐶𝐶 𝑥𝑥𝐵𝐵 𝑝𝑝′ 𝑥𝑥𝐷𝐷 𝑥𝑥𝐵𝐵 𝑝𝑝𝑝(𝑥𝑥𝐵𝐵)

= 𝑑𝑑 𝑝𝑝′(𝑥𝑥𝐵𝐵 , 𝑥𝑥𝐶𝐶 , 𝑥𝑥𝐷𝐷)||𝑝𝑝′ 𝑥𝑥𝐶𝐶 𝑥𝑥𝐵𝐵 𝑝𝑝′ 𝑥𝑥𝐷𝐷 𝑥𝑥𝐵𝐵 𝑝𝑝′ 𝑥𝑥𝐵𝐵 ≥ 0

𝐴𝐴

𝐵𝐵

𝐷𝐷

𝐶𝐶

𝐴𝐴

𝐵𝐵

𝐷𝐷

𝐶𝐶
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Approach 1:  Chow-Liu Trees

• Suppose that we want to find the best tree-structured BN that 
represents a given joint probability distribution

– Minimize the KL-divergence between the true distribution and the 
one given by the BN

• First, let’s consider the infinite data limit

– We want to find the directed tree T that minimizes

𝑑𝑑 𝑝𝑝(𝑥𝑥)||�
𝑖𝑖

𝑝𝑝 𝑥𝑥𝑖𝑖 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖∈𝑇𝑇 = ?
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Approach 1:  Chow-Liu Trees

𝑑𝑑 𝑝𝑝(𝑥𝑥)||�
𝑖𝑖

𝑝𝑝 𝑥𝑥𝑖𝑖 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖∈𝑇𝑇 = −𝐻𝐻 𝑝𝑝 + �
𝑖𝑖

𝐻𝐻 𝑝𝑝𝑖𝑖 − �
𝑖𝑖,𝑗𝑗 ∈𝑇𝑇

𝐼𝐼(𝑥𝑥𝑖𝑖; 𝑥𝑥𝑗𝑗)

• 𝐼𝐼 𝑥𝑥𝑖𝑖; 𝑥𝑥𝑗𝑗 = ∑𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗 𝑝𝑝 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 log 𝑝𝑝 𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗
𝑝𝑝 𝑥𝑥𝑖𝑖 𝑝𝑝(𝑥𝑥𝑗𝑗)

is called the mutual 

information 

– Measures the dependence between two random variables

• Minimizing the KL-divergence over all directed trees is then 
equivalent  to finding

max
𝑇𝑇

�
𝑖𝑖,𝑗𝑗 ∈𝑇𝑇

𝐼𝐼(𝑥𝑥𝑖𝑖; 𝑥𝑥𝑗𝑗)
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Approach 1:  Chow-Liu Trees

max
𝑇𝑇

�
𝑖𝑖,𝑗𝑗 ∈𝑇𝑇

𝐼𝐼(𝑥𝑥𝑖𝑖; 𝑥𝑥𝑗𝑗)

• This problem can be solved by finding the maximum weight spanning 
tree in the complete graph with edge weight 𝑤𝑤𝑖𝑖𝑗𝑗 given by the mutual 
information over the edge (𝑖𝑖, 𝑗𝑗)

– Greedy algorithm works:  at each step, pick the largest remaining 
edge that does not form a cycle when added to the already 
selected edges
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Approach 1:  Chow-Liu Trees

• To use this technique for learning, we simply compute the mutual 
information for each edge using the empirical probability 
distributions and then find the max-weight spanning tree

– Why does this maximize the log-likelihood?

• As a result, we can learn tree-structured BNs in polynomial time 

– Can we generalize this to all DAGs?
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Chow-Liu Trees:  Example

• Edge weights correspond to empirical mutual information for the 
earlier samples

𝐴𝐴

𝐵𝐵 𝐷𝐷

𝐶𝐶

.07

.32

.02

.32

.32.17
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Chow-Liu Trees:  Example

• Edge weights correspond to empirical mutual information for the 
earlier samples

𝐴𝐴

𝐵𝐵 𝐷𝐷

𝐶𝐶

.07

.32

.02

.32

.32.17
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Chow-Liu Trees:  Example

• Any directed tree (where each node has one parent) over these edges 
maximizes the log-likelihood

– Why doesn’t the direction matter?

𝐴𝐴

𝐵𝐵 𝐷𝐷

𝐶𝐶
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Approach 2:  Penalized Likelihood

• Add a penalty term to the log-likelihood that can depend on the 
number of samples and the chosen structure

ℓ 𝐺𝐺,𝜃𝜃 = �
𝑚𝑚

log 𝑝𝑝𝐺𝐺(𝑥𝑥𝑚𝑚|𝜃𝜃) − 𝜂𝜂 𝑀𝑀 𝐷𝐷𝑖𝑖𝐷𝐷(𝐺𝐺)

• 𝜂𝜂(𝑀𝑀) is only a function of the number of samples

– 𝜂𝜂 𝑀𝑀 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 called the Akaike information criterion

– 𝜂𝜂 𝑀𝑀 = log 𝑀𝑀
2

called the Bayesian information criterion

• 𝐷𝐷𝑖𝑖𝐷𝐷(𝐺𝐺) is the number of parameters needed to represent 𝐺𝐺
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