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Exponential Families &
Expectation Propagation



Discrete State Spaces

• We have been focusing on the case of MRFs over discrete state 
spaces

• Probability distributions over discrete spaces correspond to vectors 
of probabilities for each element in the space such that the vector 
sums to one

– The partition function is simply a sum over all of the possible 
values for each variable

– Entropy of the distribution is nonnegative and is also computed by 
summing over the state space
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Continuous State Spaces

𝑝𝑝 𝑥𝑥 =
1
𝑍𝑍
�
𝐶𝐶

𝜓𝜓𝐶𝐶 𝑥𝑥𝐶𝐶

• For continuous state spaces, the partition function is now an integral

𝑍𝑍 = ��
𝐶𝐶

𝜓𝜓𝐶𝐶 𝑥𝑥𝐶𝐶 𝑑𝑑𝑑𝑑

• The entropy becomes

𝐻𝐻 𝑥𝑥 = −�𝑝𝑝 𝑥𝑥 log 𝑝𝑝(𝑥𝑥) 𝑑𝑑𝑑𝑑
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Differential Entropy

𝐻𝐻 𝑥𝑥 = −�𝑝𝑝 𝑥𝑥 log 𝑝𝑝(𝑥𝑥) 𝑑𝑑𝑑𝑑

• This is called the differential entropy

– It is not always greater than or equal to zero

• Easy to construct such distributions:

– Let 𝑞𝑞 𝑥𝑥 be the uniform distribution over the interval 
[𝑎𝑎, 𝑏𝑏], what is the entropy of 𝑞𝑞(𝑥𝑥)?
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Differential Entropy

𝐻𝐻 𝑥𝑥 = −�𝑝𝑝 𝑥𝑥 log 𝑝𝑝(𝑥𝑥) 𝑑𝑑𝑑𝑑

• This is called the differential entropy

– It is not always greater than or equal to zero

• Easy to construct such distributions:

– Let 𝑞𝑞 𝑥𝑥 be the uniform distribution over the interval 
[𝑎𝑎, 𝑏𝑏], what is the entropy of 𝑞𝑞(𝑥𝑥)?

𝐻𝐻 𝑞𝑞 = −�
𝑎𝑎

𝑏𝑏 1
𝑏𝑏 − 𝑎𝑎

log
1

𝑏𝑏 − 𝑎𝑎
𝑑𝑑𝑑𝑑 = log(𝑏𝑏 − 𝑎𝑎)
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KL Divergence

𝑑𝑑(𝑞𝑞| 𝑝𝑝 = �𝑞𝑞 𝑥𝑥 log
𝑞𝑞 𝑥𝑥
𝑝𝑝(𝑥𝑥) 𝑑𝑑𝑑𝑑

• The KL-divergence is still nonnegative, even though it contains the 
differential entropy

– This means that all of the observations that we made for finite state 
spaces will carry over to the continuous case

– The EM algorithm, mean-field methods, etc.

– Most importantly

log 𝑍𝑍 ≥ 𝐻𝐻 𝑞𝑞 + �
𝐶𝐶

�𝑞𝑞𝐶𝐶 𝑥𝑥𝐶𝐶 log𝜓𝜓𝐶𝐶 𝑥𝑥𝐶𝐶 𝑑𝑑𝑥𝑥𝐶𝐶
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Continuous State Spaces

• Examples of probability distributions over continuous state spaces

– The uniform distribution over the interval [𝑎𝑎, 𝑏𝑏]

𝑞𝑞 𝑥𝑥 =
1𝑥𝑥∈ 𝑎𝑎,𝑏𝑏

𝑏𝑏 − 𝑎𝑎

– The multivariate normal distribution with mean 𝜇𝜇 and covariance 
matrix Σ

𝑞𝑞 𝑥𝑥 =
1

2𝜋𝜋 𝑘𝑘det(Σ)
exp −

1
2
𝑥𝑥 − 𝜇𝜇 𝑇𝑇Σ−1(𝑥𝑥 − 𝜇𝜇)
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Continuous State Spaces

• What makes continuous distributions so difficult to deal with?

– They may not be compactly representable

– Families of continuous distributions need not be closed under 
marginalization

• The marginal distributions of multivariate normal distributions 
are again (multivariate) normal distributions

– Integration problems of interest (e.g., the partition function or 
marginal distributions) may not have closed form solutions

• Integrals may also not exist!
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The Exponential Family

𝑝𝑝 𝑥𝑥 𝜃𝜃 = h x ⋅ exp 𝜃𝜃, 𝜙𝜙(𝑥𝑥) − log 𝑍𝑍(𝜃𝜃)

• A distribution is a member of the exponential family if its probability 
density function can be expressed as above for some choice of 
parameters 𝜃𝜃 and potential functions 𝜙𝜙(𝑥𝑥)

• We are only interested in models for which 𝑍𝑍(𝜃𝜃) is finite

• The family of log-linear models that we have been focusing on in the 
discrete case belong to the exponential family
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The Exponential Family

𝑝𝑝 𝑥𝑥 𝜃𝜃 = h x ⋅ exp 𝜃𝜃, 𝜙𝜙(𝑥𝑥) − log 𝑍𝑍(𝜃𝜃)

• As in the discrete case, there is not necessarily a unique way to 
express a distribution in this form

• We say that the representation is minimal if there does not exist a 
vector 𝑎𝑎 ≠ 0 such that 

𝑎𝑎, 𝜙𝜙(𝑥𝑥) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

– In this case, there is a unique parameter vector associated with 
each member of the family

– The 𝜙𝜙 are called sufficient statistics for the distribution
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The Multivariate Normal

𝑞𝑞 𝑥𝑥|𝜇𝜇, Σ =
1
𝑍𝑍

exp −
1
2
𝑥𝑥 − 𝜇𝜇 𝑇𝑇Σ−1 𝑥𝑥 − 𝜇𝜇

• The multivariate normal distribution is a member of the exponential 
family

𝑞𝑞 𝑥𝑥|𝜃𝜃 =
1

𝑍𝑍(𝜃𝜃)
exp �

𝑖𝑖

𝜃𝜃𝑖𝑖𝑥𝑥𝑖𝑖 + �
𝑖𝑖≥𝑗𝑗

𝜃𝜃𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗

• The mean and the covariance matrix (must be positive semidefinite) 
are sufficient statistics of the multivariate normal distribution
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The Exponential Family

• Many of the discrete distributions that you have seen before are 
members of the exponential family

– Binomial, Poisson, Bernoulli, Gamma, Beta, Laplace, Categorical, 
etc.

• The exponential family, while not the most general parametric family, 
is one of the easiest to work with and captures a variety of different 
distributions
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Continuous Bethe Approximation

• Recall that, from the nonnegativity of the KL-divergence

log 𝑍𝑍 ≥ 𝐻𝐻 𝑞𝑞 + �
𝐶𝐶

�𝑞𝑞𝐶𝐶 𝑥𝑥𝐶𝐶 log𝜓𝜓𝐶𝐶 𝑥𝑥𝐶𝐶 𝑑𝑑𝑥𝑥𝐶𝐶

for any probability distribution 𝑞𝑞

• We can make the same approximations that we did in the discrete 
case to approximate 𝑍𝑍(𝜃𝜃) in the continuous case

13



Continuous Bethe Approximation

max
𝜏𝜏∈𝐓𝐓

𝐻𝐻𝐵𝐵 𝜏𝜏 + �
𝐶𝐶

�𝜏𝜏𝐶𝐶 𝑥𝑥𝐶𝐶 log𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐 𝑑𝑑𝑥𝑥𝐶𝐶

where

𝐻𝐻𝐵𝐵 𝜏𝜏 = −�
𝑖𝑖∈V

�𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 log 𝜏𝜏𝑖𝑖(𝑥𝑥𝑖𝑖) 𝑑𝑑𝑥𝑥𝑖𝑖 −�
𝐶𝐶

�𝜏𝜏𝐶𝐶 𝑥𝑥𝐶𝐶 log
𝜏𝜏𝐶𝐶(𝑥𝑥𝐶𝐶)

∏𝑖𝑖∈𝐶𝐶 𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖
𝑑𝑑𝑥𝑥𝐶𝐶

and 𝑇𝑇 is a vector of locally consistent marginals

• This approximation is exact on trees
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Continuous Belief Propagation

𝑝𝑝 𝑥𝑥 =
1
𝑍𝑍
�
𝑖𝑖∈𝑉𝑉

𝜙𝜙𝑖𝑖(𝑥𝑥𝑖𝑖) �
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸

𝜓𝜓𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗)

• The messages passed by belief propagation are 

𝑚𝑚𝑖𝑖𝑖𝑖 𝑥𝑥𝑗𝑗 = �𝜙𝜙𝑖𝑖 𝑥𝑥𝑖𝑖 𝜓𝜓𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗 �
𝑘𝑘∈𝑁𝑁 𝑖𝑖 ∖𝑗𝑗

𝑚𝑚𝑘𝑘𝑘𝑘(𝑥𝑥𝑖𝑖) 𝑑𝑑𝑥𝑥𝑖𝑖

• Depending on the functional form of the potential functions, the 
message update may not have a closed form solution

– We can’t necessarily compute the correct marginal 
distributions/partition function even in the case of a tree!
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Gaussian Belief Propagation

• When 𝑝𝑝(𝑥𝑥) is a multivariate normal distribution, the message 
updates can be computed in closed form

– In this case, max-product and sum-product are equivalent

– Note that computing the mode of a multivariate normal is 
equivalent to solving a linear system of equations

– Called Gaussian belief propagation or GaBP

– Does not converge for all multivariate normal

• The messages can have a non-positive definite inverse 
covariance matrix
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Properties of Exponential Families

• Exponential families are

– Closed under multiplication

– Not closed under marginalization

• Easy to get mixtures of Gaussians when a model has both 
discrete and continuous variables

– Let 𝑝𝑝(𝑥𝑥, 𝑦𝑦) be such that 𝑥𝑥 ∈ ℝ𝑛𝑛 and 𝑦𝑦 ∈ {1, … , 𝑘𝑘} such 
that 𝑝𝑝(𝑥𝑥|𝑦𝑦) is normally distributed and 𝑝𝑝 𝑦𝑦 is 
multinomially distributed

– 𝑝𝑝(𝑥𝑥) is then a Gaussian mixture (mixtures of exponential 
family distributions are not generally in the exponential 
family)
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Properties of Exponential Families

• Derivatives of the log-partition function correspond to expectations of 
the sufficient statistics

𝛻𝛻𝜃𝜃 log 𝑍𝑍(𝜃𝜃) = �𝑝𝑝 𝑥𝑥 𝜃𝜃 𝜙𝜙(𝑥𝑥)𝑑𝑑𝑑𝑑

• So do second derivatives
𝜕𝜕2

𝜕𝜕𝜃𝜃𝑘𝑘𝜕𝜕𝜃𝜃𝑙𝑙
log 𝑍𝑍 𝜃𝜃 =

�𝑝𝑝 𝑥𝑥 𝜃𝜃 𝜙𝜙 𝑥𝑥 𝑘𝑘𝜙𝜙 𝑥𝑥 𝑙𝑙𝑑𝑑𝑑𝑑 − �𝑝𝑝 𝑥𝑥 𝜃𝜃 𝜙𝜙 𝑥𝑥 𝑘𝑘𝑑𝑑𝑑𝑑 �𝑝𝑝 𝑥𝑥 𝜃𝜃 𝜙𝜙 𝑥𝑥 𝑙𝑙𝑑𝑑𝑑𝑑

18



Mean Parameters

• Exponential family distributions can be equivalently characterized in 
terms of their mean parameters

• Consider the set of all vectors 𝜇𝜇 such that 

𝜇𝜇𝑘𝑘 = �𝑞𝑞(𝑥𝑥)𝜙𝜙 𝑥𝑥 𝑘𝑘𝑑𝑑𝑑𝑑

for some probability distribution 𝑞𝑞(𝑥𝑥)

• If the representation is minimal, then every collection of mean 
parameters can be realized (perhaps as a limit) by some exponential 
family

– This characterization is unique
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KL-Divergence and Exponential Families

• Minimizing KL divergence is equivalent to “moment matching”

• Let 𝑞𝑞 𝑥𝑥 𝜃𝜃 = h x ⋅ exp 𝜃𝜃, 𝜙𝜙(𝑥𝑥) − log 𝑍𝑍(𝜃𝜃) and let 𝑝𝑝(𝑥𝑥) be 
an arbitrary distribution

𝑑𝑑(𝑝𝑝| 𝑞𝑞 = �𝑝𝑝(𝑥𝑥) log
𝑝𝑝(𝑥𝑥)
𝑞𝑞(𝑥𝑥|𝜃𝜃)

𝑑𝑑𝑑𝑑

• This KL divergence is minimized when

�𝑝𝑝 𝑥𝑥 𝜙𝜙 𝑥𝑥 𝑘𝑘𝑑𝑑𝑑𝑑 = �𝑞𝑞 𝑥𝑥 𝜃𝜃 𝜙𝜙 𝑥𝑥 𝑘𝑘𝑑𝑑𝑑𝑑
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Expectation Propagation

• Key idea: given 𝑝𝑝 𝑥𝑥 = 1
𝑍𝑍
∏𝐶𝐶 𝜓𝜓𝐶𝐶(𝑥𝑥𝐶𝐶) approximate it by a simpler 

distribution 𝑝𝑝 𝑥𝑥 ≈ �𝑝𝑝 𝑥𝑥 = 1
�𝑍𝑍
∏𝐶𝐶 �𝜓𝜓𝐶𝐶(𝑥𝑥𝐶𝐶)

• We could just replace each factor with a member of some exponential 
family that best describes it, but this can result in a poor 
approximation unless each 𝜓𝜓𝐶𝐶 is essentially a member of the 
exponential family already

• Instead, we construct the approximating distribution by performing a 
series of optimizations
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Expectation Propagation

• Input 𝑝𝑝 𝑥𝑥 = 1
𝑍𝑍
∏𝐶𝐶 𝜓𝜓𝐶𝐶(𝑥𝑥𝐶𝐶)

• Initialize the approximate distribution �𝑝𝑝 𝑥𝑥 = 1
�𝑍𝑍
∏𝐶𝐶 �𝜓𝜓𝐶𝐶(𝑥𝑥𝐶𝐶) so that 

each �𝜓𝜓𝐶𝐶(𝑥𝑥𝐶𝐶) is a member of some exponential family

• Repeat until convergence

– For each 𝐶𝐶

• Let 𝑞𝑞 𝑥𝑥 = �𝑝𝑝 𝑥𝑥
�𝜓𝜓𝐶𝐶 𝑥𝑥𝐶𝐶

𝜓𝜓𝐶𝐶(𝑥𝑥𝐶𝐶)

• Set �𝑝𝑝 𝑥𝑥 = argmin𝑞𝑞′ 𝑑𝑑(𝑞𝑞||𝑞𝑞′) where the minimization is 
over all exponential families 𝑞𝑞′ of the chosen form

22



Expectation Propagation

• EP over exponential family distributions maximizes the Bethe free 
energy subject to the following moment matching conditions (instead 
of the marginalization conditions)

�𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 𝜙𝜙𝑖𝑖 𝑥𝑥𝑖𝑖 𝑑𝑑𝑥𝑥𝑖𝑖 = �𝜏𝜏𝐶𝐶 𝑥𝑥𝐶𝐶 𝜙𝜙𝑖𝑖 𝑥𝑥𝑖𝑖 𝑑𝑑𝑥𝑥𝐶𝐶

where 𝜙𝜙𝑖𝑖 is a vector of sufficient statistics
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Expectation Propagation

• Maximizing the Bethe free energy subject to these moment matching 
constraints is equivalent to a form of belief propagation where the 
beliefs are projected onto a set of allowable marginal distributions 
(e.g., those in a specific exponential family)

• This is the approach that is often used to handle continuous 
distributions in practice

• Other methods include discretization/sampling methods that make 
use of BP in a discrete setting
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