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More Bayesian Networks



Recap

• Last time:

– Complexity challenges

• Representing distributions

• Computing probabilities/doing inference

– Introduction to Bayesian networks

• Today:

– D-separation, I-maps, limits of Bayesian networks
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Bayesian Networks

• A Bayesian network is a directed graphical model that represents 
independence relationships of a given probability distribution

– Directed acyclic graph (DAG), 𝐺𝐺 = (𝑉𝑉,𝐸𝐸)

• Edges are still pairs of vertices, but the edges (1,2) and (2,1) are now 
distinct in this model

– One node for each random variable

– One conditional probability distribution per node

– Directed edge represents a direct statistical dependence
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Bayesian Networks

• A Bayesian network is a directed graphical model that represents 
independence relationships of a given probability distribution

– Encodes local Markov independence assumptions that each 
node is independent of its non-descendants given its parents

– Corresponds to a factorization of the joint distribution 

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 = �
𝑖𝑖

𝑝𝑝(𝑥𝑥𝑖𝑖|𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖))
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Directed Chain

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 = 𝑝𝑝 𝑥𝑥1 𝑝𝑝 𝑥𝑥2 𝑥𝑥1 𝑝𝑝 𝑥𝑥3 𝑥𝑥2 …𝑝𝑝(𝑥𝑥𝑛𝑛|𝑥𝑥𝑛𝑛−1)

𝑋𝑋1 𝑋𝑋2 𝑋𝑋𝑛𝑛−1 𝑋𝑋𝑛𝑛...
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An Example

from Artificial Intelligence: A Modern Approach 6



D-separation

• Independence relationships can be figured out by looking at the 
graph structure!

– Easier than looking at the tables and plugging into the definition

• We look at all of the paths from 𝑋𝑋 to 𝑌𝑌 in the graph and determine 
whether or not they are blocked

– 𝑋𝑋 ⊂ 𝑉𝑉 is d-separated from 𝑌𝑌 ⊂ 𝑉𝑉 given 𝑍𝑍 ⊂ 𝑉𝑉 iff every path 
from 𝑋𝑋 to 𝑌𝑌 in the graph is blocked by 𝑍𝑍
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D-separation

• Three types of situations can occur along any given path

(1) Sequential

The path from 𝑋𝑋 to 𝑌𝑌 is blocked if we condition on 𝑊𝑊

Intuitively, if we condition on 𝑊𝑊, then information about 𝑋𝑋 does not 
affect 𝑌𝑌 and vice versa

𝑋𝑋 𝑊𝑊 𝑌𝑌
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D-separation

• Three types of situations can occur along any given path

(2) Divergent

The path from 𝑋𝑋 to 𝑌𝑌 is blocked if we condition on 𝑊𝑊

If we don't condition on 𝑊𝑊, then information about 𝑊𝑊 could affect the 
probability of observing either 𝑋𝑋 or 𝑌𝑌

𝑋𝑋

𝑊𝑊

𝑌𝑌
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D-separation

• Three types of situations can occur along any given path

(3) Convergent

The path from 𝑋𝑋 to 𝑌𝑌 is blocked if we do not condition on 𝑊𝑊 or any of 
its descendants

Conditioning on 𝑊𝑊 couples the variables 𝑋𝑋 and 𝑌𝑌: knowing whether or 
not 𝑋𝑋 occurs impacts the probability that 𝑌𝑌 occurs

𝑋𝑋

𝑊𝑊

𝑌𝑌
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D-separation

• If the joint probability distribution factorizes with respect to the DAG 
𝐺𝐺 = (𝑉𝑉,𝐸𝐸), then 𝑋𝑋 is d-separated from 𝑌𝑌 given 𝑍𝑍 implies 𝑋𝑋 ⊥
𝑌𝑌 | 𝑍𝑍

– We can use this to quickly check independence assertions by 
using the graph

– In general, these are only a subset of all independence 
relationships that are actually present in the joint distribution

– If 𝑋𝑋 and 𝑌𝑌 are not d-separated in 𝐺𝐺 given 𝑍𝑍, then there is some 
distribution that factorizes over 𝐺𝐺 in which 𝑋𝑋 and 𝑌𝑌 dependent
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D-separation Example

𝐴𝐴

𝐵𝐵

𝐶𝐶

𝐷𝐷

𝐸𝐸

𝐹𝐹

𝐻𝐻

𝐺𝐺

𝐼𝐼
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Equivalent Models?

𝐴𝐴

𝐵𝐵

𝐶𝐶

𝐶𝐶

𝐵𝐵

𝐴𝐴

Do these models represent the same independence 
relations?
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Equivalent Models?

𝐴𝐴

𝐵𝐵

𝐶𝐶

𝐴𝐴

𝐵𝐵

𝐶𝐶

Do these models represent the same independence 
relations?
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Equivalent Models?

𝐴𝐴

𝐵𝐵

𝐶𝐶

𝐴𝐴

𝐵𝐵

𝐶𝐶

Do these models represent the same independence 
relations?
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D-separation

• Let 𝐼𝐼(𝑝𝑝) be the set of all independence relationships in the joint 
distribution 𝑝𝑝 and 𝐼𝐼(𝐺𝐺) be the set of all independence relationships 
implied by the graph 𝐺𝐺

• We say that 𝐺𝐺 is an I-map for 𝐼𝐼(𝑝𝑝) if 𝐼𝐼 𝐺𝐺 ⊆ 𝐼𝐼(𝑝𝑝)

• Theorem:  the joint probability distribution, 𝑝𝑝, factorizes with respect 
to the DAG 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) iff 𝐺𝐺 is an I-map for 𝐼𝐼(𝑝𝑝)

• An I-map is perfect if 𝐼𝐼 𝐺𝐺 = 𝐼𝐼 𝑝𝑝

– Not always possible to perfectly represent all of the independence relations 
with a graph
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I-Maps

𝐴𝐴

𝐵𝐵 𝐷𝐷

𝐶𝐶

What independence relations does this model imply?
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I-Maps

𝐴𝐴

𝐵𝐵 𝐷𝐷

𝐶𝐶

𝐼𝐼 𝐺𝐺 = ∅, this is an I-map for any joint distribution on four 
variables!
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Naïve Bayes

𝑝𝑝 𝑦𝑦, 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 = 𝑝𝑝(𝑦𝑦)𝑝𝑝 𝑥𝑥1|𝑦𝑦 … 𝑝𝑝(𝑥𝑥𝑛𝑛|𝑦𝑦)

• In practice, we often have variables that we observe directly and 
those that can only be observed indirectly

𝑌𝑌

𝑋𝑋1 𝑋𝑋2 𝑋𝑋𝑛𝑛...
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Naïve Bayes

𝑝𝑝 𝑦𝑦, 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 = 𝑝𝑝(𝑦𝑦)𝑝𝑝 𝑥𝑥1|𝑦𝑦 … 𝑝𝑝(𝑥𝑥𝑛𝑛|𝑦𝑦)

• This model assumes that 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 are independent given 𝑌𝑌, 
sometimes called naïve Bayes

𝑌𝑌

𝑋𝑋1 𝑋𝑋2 𝑋𝑋𝑛𝑛...
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Example:  Naïve Bayes

• Let 𝑌𝑌 be a binary random variable indicating whether or not an email 
is a piece of spam

• For each word in the dictionary, create a binary random variable 𝑋𝑋𝑖𝑖
indicating whether or not word 𝑖𝑖 appears in the email

• For simplicity, we will assume that 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 are independent given 
𝑌𝑌

• How do we compute the probability that an email is spam?
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Hidden Markov Models

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑇𝑇 ,𝑦𝑦1, … ,𝑦𝑦𝑇𝑇 = 𝑝𝑝 𝑦𝑦1 𝑝𝑝 𝑥𝑥1 𝑦𝑦1 �
𝑡𝑡=2

𝑝𝑝 𝑦𝑦𝑡𝑡 𝑦𝑦𝑡𝑡−1 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑦𝑦𝑡𝑡)

• Used in coding, speech recognition, etc.

• Independence assertions?

𝑌𝑌1 𝑌𝑌2 𝑌𝑌𝑇𝑇−1 𝑌𝑌𝑇𝑇...

𝑋𝑋1 𝑋𝑋2 𝑋𝑋𝑇𝑇−1 𝑋𝑋𝑇𝑇...



Limits of Bayesian Networks

• Not all sets of independence relations can be captured by a Bayesian 
network

– 𝐴𝐴 ⊥ 𝐶𝐶 | 𝐵𝐵,𝐷𝐷
– 𝐵𝐵 ⊥ 𝐷𝐷 | 𝐴𝐴,𝐶𝐶

• Possible DAGs that represent these independence relationships?

𝐴𝐴

𝐵𝐵 𝐶𝐶

𝐷𝐷 𝐵𝐵

𝐶𝐶 𝐴𝐴

𝐷𝐷
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Markov Random Fields (MRFs)

• A Markov random field is an undirected graphical model

– Undirected graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸)

– One node for each random variable

– Potential function or "factor" associated with cliques, 𝐶𝐶, of the 
graph

– Nonnegative potential functions represent interactions and 
need not correspond to conditional probabilities (may not even 
sum to one)
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Markov Random Fields (MRFs)

• A Markov random field is an undirected graphical model

– Corresponds to a factorization of the joint distribution 

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 =
1
𝑍𝑍
�
𝑐𝑐∈𝐶𝐶

𝜓𝜓𝑐𝑐(𝑥𝑥𝑐𝑐)

𝑍𝑍 = �
𝑥𝑥1′ ,…,𝑥𝑥𝑛𝑛′

�
𝑐𝑐∈𝐶𝐶

𝜓𝜓𝑐𝑐(𝑥𝑥𝑐𝑐′)
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Markov Random Fields (MRFs)

• A Markov random field is an undirected graphical model

– Corresponds to a factorization of the joint distribution 

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 =
1
𝑍𝑍
�
𝑐𝑐∈𝐶𝐶

𝜓𝜓𝑐𝑐(𝑥𝑥𝑐𝑐)

𝑍𝑍 = �
𝑥𝑥1′ ,…,𝑥𝑥𝑛𝑛′

�
𝑐𝑐∈𝐶𝐶

𝜓𝜓𝑐𝑐(𝑥𝑥𝑐𝑐′)

Normalizing constant, 𝑍𝑍, often called the partition function
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An Example

• 𝑝𝑝 𝑥𝑥𝐴𝐴, 𝑥𝑥𝐵𝐵, 𝑥𝑥𝐶𝐶 = 1
𝑍𝑍
𝜓𝜓𝐴𝐴𝐴𝐴(𝑥𝑥𝐴𝐴, 𝑥𝑥𝐵𝐵)𝜓𝜓𝐵𝐵𝐵𝐵(𝑥𝑥𝐵𝐵, 𝑥𝑥𝐶𝐶)𝜓𝜓𝐴𝐴𝐶𝐶(𝑥𝑥𝐴𝐴, 𝑥𝑥𝐶𝐶)

• Each potential function can be specified as a table as before

𝐴𝐴

𝐵𝐵 𝐶𝐶

1 1

1 0

𝑥𝑥𝐴𝐴 = 0 𝑥𝑥𝐴𝐴 = 1

𝜓𝜓𝐴𝐴𝐴𝐴 𝑥𝑥𝐴𝐴, 𝑥𝑥𝐵𝐵 =
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The Ising Model

• Mathematical model of ferromagnets

• Each atom has an associated spin that is biased by both its neighbors 
in the material and an external magnetic field

– Spins can be either +1 or -1
– Edge potentials capture the local

interactions
– Singleton potentials capture the

external field

𝑝𝑝 𝑥𝑥𝑉𝑉 =
1
𝑍𝑍

exp �
𝑖𝑖∈V

ℎ𝑖𝑖𝑥𝑥𝑖𝑖 + �
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸

𝐽𝐽𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗
+1

−1 −1

−1 +1

−1 +1

−1

+1

+1 +1

−1 +1

+1 +1

−1
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Independence Assertions

𝑝𝑝 𝑥𝑥𝐴𝐴, 𝑥𝑥𝐵𝐵 , 𝑥𝑥𝐶𝐶 =
1
𝑍𝑍
𝜓𝜓𝐴𝐴𝐴𝐴 𝑥𝑥𝐴𝐴, 𝑥𝑥𝐵𝐵 𝜓𝜓𝐵𝐵𝐵𝐵(𝑥𝑥𝐵𝐵, 𝑥𝑥𝐶𝐶)

• How does separation imply independence?

• Show that 𝐴𝐴 ⊥ 𝐶𝐶 | 𝐵𝐵

𝐴𝐴 𝐵𝐵 𝐶𝐶
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