CS 6347

Lectures 6 & 7

Approximate MAP Inference



Belief Propagation
.

e Efficient method for inference on a tree

e Represent the variable elimination process as a collection of
messages passed between nodes in the tree

— The messages keep track of the potential functions produced
throughout the elimination process




Belief Propagation (for pairwise MRFs)

o (X, ., Xp) = %Hiev ¢i(x) i jyeg Wiy (xi x5)

mi_j (xj) = Z ¢i(xi)¢ij (xi: xj) kel}\;[)\j My i(x;)

where N (i) is the set of neighbors of node i in the graph

* Messages are passed in two phases: from the leaves up to the root
and then from the root down to the leaves




MAP Inference

e Compute the most likely assignment under the (conditional) joint
distribution

x* = argmaxp(x)
X

e Can encode 3-SAT, maximum independent set problem, etc. as a
MAP inference problem




Max-Product (for pairwise MRFs)

o (X, ., Xp) = %Hiev ¢i(x) i jyeg Wiy (xi x5)

misi(x) = max [¢i(xi)¢ij (i, x7) mkei(xi)]

keN(D\J

e Guaranteed to produced the correct answer on a tree

* Typical applications do not require computing Z




Max-Product

e To construct the maximizing assignment, we look at the max-marginal
produced by the algorithm

1
wi(x;) = Eqbi(xi) 1_[ My-i(X;)

keN(i)
e Lasttime, we argued that, on a tree,

Hi (xi) — madx p(xb ) Xn)
X1y Xi—1Xi+1,9Xn




Reparameterization

* The messages passed in max-product can be used to construct a
reparameterization of the joint distribution

1
(X1, e, Xp) = Zl_[qbi(xi) 1_[ Yy (g, %)
IEV (i,j)EE
and

Wi (xi,x;)
¢ (x;) 1_[ mk%i(Xi)‘ 1_[ mi; (o )mjis; ()

KEN (i) (i,j)EE

1
D(X1, 0y Xp) = El_[

eV




Reparameterization
.0

1 (%0, %))
p(x1, .., Xn) —El_[ i (x;) 1—[ mk"i(xi)] 1_[ miﬁj(Xj)mj—)i(xi)

iev kEN (i) (i,j)EE

* Reparameterizations do not change the partition function, the MAP
solution, or the factorization of the joint distribution

— They push "weight" around between the different factors

e Otherreparameterizations are possible/useful




Tree Reparameterization

e On atree, the joint distribution has a special form

1 uij(xi, x;)
pCas, ) = o2 | [
z' 1A (e i () (x)

e u; is the max-marginal distribution of the i*" variable and y; jisthe
max-marginal distribution for the edge (i,j) € E

* Howto express ;; as a function of the messages and the potential
functions?




MAP in General MRFs

e While max-product solves the MAP problem on trees, the MAP
problem in MRFs is, in general, intractable

— Don’t expect to be able to solve the problem exactly

— Will settle for “good” approximations

— Can use max-product messages as a starting point
 Thisis an active area of research

— Advances are constantly being made
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Upper Bounds

1
max p(xXq, .,x,) < —‘ ‘max bi(x;) ‘ ‘ maXl/)ij(xi:xj)
X1,-0Xn Z Xi X .

: 1 X j
IEV (i,j)EE
e This provides an upper bound on the optimization problem

— Do other reparameterizations provide better bounds?

11




Duality

1 j\rirAj
L(m) =El_[1’r;2X [gbl-(xi) 1_[ mk—)i(xi)] 1_[ I;Crll’?ci( ml_j)(;c](;mjci?(xl)

iev keN (i) (i,j)EE

e We construct a dual optimization problem

min L(m) = max p(x)
m X

e The dual problem is log-convex in the messages
L(m)°L(m)% > L(6m + (1 — &)m")

Equivalently, log L(m) is a convex function
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Optimizing the Dual

I
e Minimizing L(m)

— Block coordinate descent: improve the bound by changing only a
small subset of the messages at a time (usually look like
message-passing algorithms)

— Subgradient descent: variant of gradient descent for non-
differentiable functions

— Many more methods...
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Integer Programming
.00/

* We can also express the MAP problem as a 0,1 integer programming
problem

— Convert a maximum of a product into a maximum of a sum by
taking logs

— Introduce indicator variables, 7, to represent the chosen
assignment
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Integer Programming
.00/

e Introduce variables
— 7;(x;) € {0,1}foreachi € V and x;
— Tij(xi,Xj) (S {0,1} for each (l,]) € E and .X'l',Xj

* The linear objective function is then

mTaXZ z T;(x;) log ¢;(x;) + z Z 715 (x5, %) log W (xy, ;)

eV x; (i,j)EE Xi)X

where the 7's are required to satisfy certain marginalization conditions
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Integer Programming

mraxz z T;(x;) log ¢; (x;) + z 2 Ti(xi, ;) log ¥y (i, ;)

eV x; (i,j)EE XiX
such that
ZTi(xi) =1 Foralli € V
Xi
Z Tl-j(x,;,xj) — T,;(x,;) For all (i;j) €L, x;
Xj
7;(x;) € {0,1} Foralli € VV, x;
Tij(xi,xj) € {0,1} For all (i;j) €E,x;, Xj
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Integer Programming

mraxz z T;(x;) log ¢; (x;) + z 2 Ti(xi, ;) log ¥y (i, ;)

LIEV X (i,j)EE xjxj
such that
These . _
constraints Z Ti (xl) 1 Foralli € V
define the X
vertices of
the marginal v v — (v Forall (i 1) € E. x.
polytope -= Z Tl] (xl' X]) T; (Xl) ( ;]) y A
(set of all Xj
valid _
marginal Ti(xi) S {0,1} Foralli € V, x;
distributions) o
Tij(xl-,xj) € {0,1} Forall (i,)) € E, x;, ;

o Ut D




An Example: Independent Sets

e Whatis the integer programming problem corresponding to the
uniform distribution over independent sets of a graph G = (V,E)?

1
p(xy) = E 1_[ 1xi+xj51

(i,j)EE

(worked out on the board)
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Linear Relaxation
e

* The integer program can be relaxed into a linear program by replacing
the 0,1 integrality constraints with linear constraints

— This relaxed set of constraints forms the local marginal polytope

e The 7’s no longer correspond to an achievable marginal
distribution, so we call them pseudo-marginals

— We call it a relaxation because the constraints have been relaxed:
all solutions to the IP are contained as solutions of the LP

e Linear programming problems can be solved in polynomial time
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Linear Relaxation

mraxz z T;(x;) log ¢; (x;) + z 2 Ti(xi, ;) log ¥y (i, ;)

eV x; (i,j)EE XiX

such that

z T;(x;) =1

z T (X, x5) = 7;(x;)
7;(x;) € [0,1]
Tij(xi,Xj) (S [0,1]

20

Foralli eV

Forall (i,j) € E, x;

Foralli € V, x;

Forall (i) € E, x;, x;




An Example: Independent Sets

e Whatis the linear programming problem corresponding to the
uniform distribution over independent sets of a graph G = (V,E)?

1
p(xy) = E 1_[ 1xi+xj51

(i,j)EE
 The MAP LP is a relaxation of the integer programming problem

— MAP LP could have a better solution... (example in class)
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LP vs. Dual

e Both the LP relaxation and the dual L (m) provide an upper bound on
the MAP objective function

— Thatis, finding an optimal collection of messages is equivalent to
finding the best pseudo-marginals

e Infact, they are equivalent optimization problems: this seems quite
surprising because the problems look so different

— The proof uses the method of Lagrange multipliers (a standard
mathematical technique to construct dual optimization problems)
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Tightness of the MAP LP

 When is it that solving the MAP LP (or equivalently, the dual
optimization) is the same as solving the integer programming
problem?

— We say that there is no duality gap (or that the dual is tight) when
this is the case

— The answer can be expressed as a structural property of the graph
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