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Lectures 6 & 7

Approximate MAP Inference



Belief Propagation

• Efficient method for inference on a tree

• Represent the variable elimination process as a collection of 
messages passed between nodes in the tree

– The messages keep track of the potential functions produced 
throughout the elimination process
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Belief Propagation (for pairwise MRFs)

• 𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 = 1
𝑍𝑍
∏𝑖𝑖∈𝑉𝑉 𝜙𝜙𝑖𝑖(𝑥𝑥𝑖𝑖)∏ 𝑖𝑖,𝑗𝑗 ∈𝐸𝐸 𝜓𝜓𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗)

𝑚𝑚𝑖𝑖→𝑗𝑗 𝑥𝑥𝑗𝑗 = �
𝑥𝑥𝑖𝑖

𝜙𝜙𝑖𝑖 𝑥𝑥𝑖𝑖 𝜓𝜓𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 �
𝑘𝑘∈𝑁𝑁 𝑖𝑖 ∖𝑗𝑗

𝑚𝑚𝑘𝑘→i(𝑥𝑥𝑖𝑖)

where 𝑁𝑁(𝑖𝑖) is the set of neighbors of node 𝑖𝑖 in the graph

• Messages are passed in two phases:  from the leaves up to the root 
and then from the root down to the leaves
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MAP Inference

• Compute the most likely assignment under the (conditional) joint 
distribution

𝑥𝑥∗ = arg max
𝑥𝑥

𝑝𝑝(𝑥𝑥)

• Can encode 3-SAT, maximum independent set problem, etc. as a 
MAP inference problem
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Max-Product (for pairwise MRFs)

• 𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 = 1
𝑍𝑍
∏𝑖𝑖∈𝑉𝑉 𝜙𝜙𝑖𝑖(𝑥𝑥𝑖𝑖)∏ 𝑖𝑖,𝑗𝑗 ∈𝐸𝐸 𝜓𝜓𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗)

𝑚𝑚𝑖𝑖→𝑗𝑗 𝑥𝑥𝑗𝑗 = max
𝑥𝑥𝑖𝑖

𝜙𝜙𝑖𝑖 𝑥𝑥𝑖𝑖 𝜓𝜓𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 �
𝑘𝑘∈𝑁𝑁 𝑖𝑖 ∖𝑗𝑗

𝑚𝑚𝑘𝑘→i(𝑥𝑥𝑖𝑖)

• Guaranteed to produced the correct answer on a tree

• Typical applications do not require computing 𝑍𝑍
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Max-Product

• To construct the maximizing assignment, we look at the max-marginal 
produced by the algorithm

𝜇𝜇𝑖𝑖 𝑥𝑥𝑖𝑖 =
1
𝑍𝑍
𝜙𝜙𝑖𝑖 𝑥𝑥𝑖𝑖 �

𝑘𝑘∈N 𝑖𝑖

𝑚𝑚𝑘𝑘→𝑖𝑖(𝑥𝑥𝑖𝑖)

• Last time, we argued that, on a tree,

𝜇𝜇𝑖𝑖 𝑥𝑥𝑖𝑖 = max
𝑥𝑥1,…,𝑥𝑥𝑖𝑖−1,𝑥𝑥𝑖𝑖+1,…,𝑥𝑥𝑛𝑛

𝑝𝑝(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)
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Reparameterization

• The messages passed in max-product can be used to construct a 
reparameterization of the joint distribution

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 =
1
𝑍𝑍
�
𝑖𝑖∈𝑉𝑉

𝜙𝜙𝑖𝑖(𝑥𝑥𝑖𝑖) �
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸

𝜓𝜓𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗)

and

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 =
1
𝑍𝑍
�
𝑖𝑖∈𝑉𝑉

𝜙𝜙𝑖𝑖 𝑥𝑥𝑖𝑖 �
𝑘𝑘∈𝑁𝑁(𝑖𝑖)

𝑚𝑚𝑘𝑘→𝑖𝑖(𝑥𝑥𝑖𝑖) �
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸

𝜓𝜓𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗
𝑚𝑚𝑖𝑖→𝑗𝑗 𝑥𝑥𝑗𝑗 𝑚𝑚𝑗𝑗→𝑖𝑖 𝑥𝑥𝑖𝑖
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Reparameterization

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 =
1
𝑍𝑍
�
𝑖𝑖∈𝑉𝑉

𝜙𝜙𝑖𝑖 𝑥𝑥𝑖𝑖 �
𝑘𝑘∈𝑁𝑁(𝑖𝑖)

𝑚𝑚𝑘𝑘→𝑖𝑖(𝑥𝑥𝑖𝑖) �
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸

𝜓𝜓𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗
𝑚𝑚𝑖𝑖→𝑗𝑗 𝑥𝑥𝑗𝑗 𝑚𝑚𝑗𝑗→𝑖𝑖 𝑥𝑥𝑖𝑖

• Reparameterizations do not change the partition function, the MAP 
solution, or the factorization of the joint distribution

– They push "weight" around between the different factors

• Other reparameterizations are possible/useful

8



Tree Reparameterization

• On a tree, the joint distribution has a special form

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 =
1
𝑍𝑍′
�
𝑖𝑖∈𝑉𝑉

𝜇𝜇𝑖𝑖(𝑥𝑥𝑖𝑖) �
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸

𝜇𝜇𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗)
𝜇𝜇𝑖𝑖 𝑥𝑥𝑖𝑖 𝜇𝜇𝑗𝑗(𝑥𝑥𝑗𝑗)

• 𝜇𝜇𝑖𝑖 is the max-marginal distribution of the 𝑖𝑖𝑡𝑡𝑡 variable and 𝜇𝜇𝑖𝑖𝑖𝑖 is the 
max-marginal distribution for the edge 𝑖𝑖, 𝑗𝑗 ∈ 𝐸𝐸

• How to express 𝜇𝜇𝑖𝑖𝑖𝑖 as a function of the messages and the potential 
functions?
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MAP in General MRFs

• While max-product solves the MAP problem on trees, the MAP 
problem in MRFs is, in general, intractable

– Don’t expect to be able to solve the problem exactly

– Will settle for “good” approximations

– Can use max-product messages as a starting point

• This is an active area of research

– Advances are constantly being made
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Upper Bounds

max
𝑥𝑥1,…,𝑥𝑥𝑛𝑛

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 ≤
1
𝑍𝑍
�
𝑖𝑖∈𝑉𝑉

max
𝑥𝑥𝑖𝑖

𝜙𝜙𝑖𝑖(𝑥𝑥𝑖𝑖) �
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸

max
𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗

𝜓𝜓𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗)

• This provides an upper bound on the optimization problem

– Do other reparameterizations provide better bounds?
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Duality

𝐿𝐿 𝑚𝑚 =
1
𝑍𝑍
�
𝑖𝑖∈𝑉𝑉

max
𝑥𝑥𝑖𝑖

𝜙𝜙𝑖𝑖 𝑥𝑥𝑖𝑖 �
𝑘𝑘∈𝑁𝑁(𝑖𝑖)

𝑚𝑚𝑘𝑘→𝑖𝑖(𝑥𝑥𝑖𝑖) �
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸

max
𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗

𝜓𝜓𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗
𝑚𝑚𝑖𝑖→𝑗𝑗 𝑥𝑥𝑗𝑗 𝑚𝑚𝑗𝑗→𝑖𝑖 𝑥𝑥𝑖𝑖

• We construct a dual optimization problem

min
𝑚𝑚

𝐿𝐿(𝑚𝑚) ≥ max
𝑥𝑥

𝑝𝑝(𝑥𝑥)

• The dual problem is log-convex in the messages

𝐿𝐿 𝑚𝑚 𝛿𝛿𝐿𝐿 𝑚𝑚′ 1−𝛿𝛿 ≥ 𝐿𝐿(𝛿𝛿𝛿𝛿 + 1 − 𝛿𝛿 𝑚𝑚′)

Equivalently, log 𝐿𝐿(𝑚𝑚) is a convex function
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Optimizing the Dual

• Minimizing 𝐿𝐿(𝑚𝑚)

– Block coordinate descent:  improve the bound by changing only a 
small subset of the messages at a time (usually look like 
message-passing algorithms)

– Subgradient descent:  variant of gradient descent for non-
differentiable functions

– Many more methods...
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Integer Programming

• We can also express the MAP problem as a 0,1 integer programming 
problem

– Convert a maximum of a product into a maximum of a sum by 
taking logs

– Introduce indicator variables, 𝜏𝜏, to represent the chosen 
assignment
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Integer Programming

• Introduce variables 

– 𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 ∈ {0,1} for each 𝑖𝑖 ∈ 𝑉𝑉 and 𝑥𝑥𝑖𝑖

– 𝜏𝜏𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 ∈ {0,1} for each 𝑖𝑖, 𝑗𝑗 ∈ 𝐸𝐸 and 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗

• The linear objective function is then

max
𝜏𝜏

�
𝑖𝑖∈𝑉𝑉

�
𝑥𝑥𝑖𝑖

𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 log𝜙𝜙𝑖𝑖 𝑥𝑥𝑖𝑖 + �
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸

�
𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗

𝜏𝜏𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 log𝜓𝜓𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗)

where the 𝜏𝜏's are required to satisfy certain marginalization conditions
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Integer Programming

max
𝜏𝜏

�
𝑖𝑖∈𝑉𝑉

�
𝑥𝑥𝑖𝑖

𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 log𝜙𝜙𝑖𝑖 𝑥𝑥𝑖𝑖 + �
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸

�
𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗

𝜏𝜏𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 log𝜓𝜓𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗)

such that

For all 𝑖𝑖 ∈ 𝑉𝑉

For all 𝑖𝑖, 𝑗𝑗 ∈ 𝐸𝐸, 𝑥𝑥𝑖𝑖

For all 𝑖𝑖 ∈ 𝑉𝑉, 𝑥𝑥𝑖𝑖

For all 𝑖𝑖, 𝑗𝑗 ∈ 𝐸𝐸, 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗

�
𝑥𝑥𝑖𝑖

𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 = 1

�
𝑥𝑥𝑗𝑗

𝜏𝜏𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗) = 𝜏𝜏𝑖𝑖(𝑥𝑥𝑖𝑖)

𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 ∈ {0,1}

𝜏𝜏𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 ∈ {0,1}
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Integer Programming

max
𝜏𝜏

�
𝑖𝑖∈𝑉𝑉

�
𝑥𝑥𝑖𝑖

𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 log𝜙𝜙𝑖𝑖 𝑥𝑥𝑖𝑖 + �
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸

�
𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗

𝜏𝜏𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 log𝜓𝜓𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗)

such that

These 
constraints 
define the 
vertices of 
the marginal 
polytope
(set of all 
valid 
marginal 
distributions)

For all 𝑖𝑖 ∈ 𝑉𝑉

For all 𝑖𝑖, 𝑗𝑗 ∈ 𝐸𝐸, 𝑥𝑥𝑖𝑖

For all 𝑖𝑖 ∈ 𝑉𝑉, 𝑥𝑥𝑖𝑖

For all 𝑖𝑖, 𝑗𝑗 ∈ 𝐸𝐸, 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗

�
𝑥𝑥𝑖𝑖

𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 = 1

�
𝑥𝑥𝑗𝑗

𝜏𝜏𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗) = 𝜏𝜏𝑖𝑖(𝑥𝑥𝑖𝑖)

𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 ∈ {0,1}

𝜏𝜏𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 ∈ {0,1}
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An Example:  Independent Sets

• What is the integer programming problem corresponding to the 
uniform distribution over independent sets of a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸)?

𝑝𝑝 𝑥𝑥𝑉𝑉 =
1
𝑍𝑍
�
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸

1𝑥𝑥𝑖𝑖+𝑥𝑥𝑗𝑗≤1

(worked out on the board)
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Linear Relaxation

• The integer program can be relaxed into a linear program by replacing 
the 0,1 integrality constraints with linear constraints

– This relaxed set of constraints forms the local marginal polytope

• The 𝜏𝜏’s no longer correspond to an achievable marginal 
distribution, so we call them pseudo-marginals

– We call it a relaxation because the constraints have been relaxed:  
all solutions to the IP are contained as solutions of the LP

• Linear programming problems can be solved in polynomial time
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Linear Relaxation

max
𝜏𝜏

�
𝑖𝑖∈𝑉𝑉

�
𝑥𝑥𝑖𝑖

𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 log𝜙𝜙𝑖𝑖 𝑥𝑥𝑖𝑖 + �
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸

�
𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗

𝜏𝜏𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 log𝜓𝜓𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗)

such that

For all 𝑖𝑖 ∈ 𝑉𝑉

For all 𝑖𝑖, 𝑗𝑗 ∈ 𝐸𝐸, 𝑥𝑥𝑖𝑖

For all 𝑖𝑖 ∈ 𝑉𝑉, 𝑥𝑥𝑖𝑖

For all 𝑖𝑖, 𝑗𝑗 ∈ 𝐸𝐸, 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗

�
𝑥𝑥𝑖𝑖

𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 = 1

�
𝑥𝑥𝑗𝑗

𝜏𝜏𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗) = 𝜏𝜏𝑖𝑖(𝑥𝑥𝑖𝑖)

𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 ∈ [0,1]

𝜏𝜏𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 ∈ [0,1]
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An Example:  Independent Sets

• What is the linear programming problem corresponding to the 
uniform distribution over independent sets of a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸)?

𝑝𝑝 𝑥𝑥𝑉𝑉 =
1
𝑍𝑍
�
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸

1𝑥𝑥𝑖𝑖+𝑥𝑥𝑗𝑗≤1

• The MAP LP is a relaxation of the integer programming problem 

– MAP LP could have a better solution… (example in class)
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LP vs. Dual

• Both the LP relaxation and the dual 𝐿𝐿(𝑚𝑚) provide an upper bound on 
the MAP objective function

– That is, finding an optimal collection of messages is equivalent to 
finding the best pseudo-marginals

• In fact, they are equivalent optimization problems:  this seems quite 
surprising because the problems look so different

– The proof uses the method of Lagrange multipliers (a standard 
mathematical technique to construct dual optimization problems)
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Tightness of the MAP LP

• When is it that solving the MAP LP (or equivalently, the dual 
optimization) is the same as solving the integer programming 
problem?

– We say that there is no duality gap (or that the dual is tight) when 
this is the case

– The answer can be expressed as a structural property of the graph
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