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Lagrange Multipliers & Varitional Bounds



General Optimization

min
𝑥𝑥∈ℝ𝑛𝑛

𝑓𝑓0(𝑥𝑥)

subject to:

𝑓𝑓𝑖𝑖 𝑥𝑥 ≤ 0, 𝑖𝑖 = 1, … ,𝑚𝑚
ℎ𝑖𝑖 𝑥𝑥 = 0, 𝑖𝑖 = 1, … , 𝑝𝑝
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General Optimization

min
𝑥𝑥∈ℝ𝑛𝑛

𝑓𝑓0(𝑥𝑥)

subject to:

𝑓𝑓𝑖𝑖 𝑥𝑥 ≤ 0, 𝑖𝑖 = 1, … ,𝑚𝑚
ℎ𝑖𝑖 𝑥𝑥 = 0, 𝑖𝑖 = 1, … , 𝑝𝑝

𝑓𝑓0 is not necessarily convex
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General Optimization

min
𝑥𝑥∈ℝ𝑛𝑛

𝑓𝑓0(𝑥𝑥)

subject to:

𝑓𝑓𝑖𝑖 𝑥𝑥 ≤ 0, 𝑖𝑖 = 1, … ,𝑚𝑚
ℎ𝑖𝑖 𝑥𝑥 = 0, 𝑖𝑖 = 1, … , 𝑝𝑝

Constraints can be arbitrary 
functions
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Lagrangian

𝐿𝐿 𝑥𝑥, 𝜆𝜆, 𝜈𝜈 = 𝑓𝑓0 𝑥𝑥 + �
𝑖𝑖=1

𝑚𝑚

𝜆𝜆𝑖𝑖𝑓𝑓𝑖𝑖 𝑥𝑥 + �
𝑖𝑖=1

𝑝𝑝

𝜈𝜈𝑖𝑖ℎ𝑖𝑖(𝑥𝑥)

• Incorporate constraints into a new objective function

• 𝜆𝜆 ≥ 0 and 𝜈𝜈 are vectors of Lagrange multipliers

• The Lagrange multipliers can be thought of as soft constraints
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Duality

• Construct a dual function by minimizing the Lagrangian over the 
primal variables

𝑔𝑔 𝜆𝜆, 𝜈𝜈 = inf
𝑥𝑥
𝐿𝐿(𝑥𝑥, 𝜆𝜆, 𝜈𝜈)

• 𝑔𝑔 𝜆𝜆, 𝜈𝜈 = −∞ whenever the Lagrangian is not bounded from below 
for a fixed 𝜆𝜆 and 𝜈𝜈
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The Primal Problem

min
𝑥𝑥∈ℝ𝑛𝑛

𝑓𝑓0(𝑥𝑥)

subject to:

𝑓𝑓𝑖𝑖 𝑥𝑥 ≤ 0, 𝑖𝑖 = 1, … ,𝑚𝑚
ℎ𝑖𝑖 𝑥𝑥 = 0, 𝑖𝑖 = 1, … , 𝑝𝑝

Equivalently,

inf
𝑥𝑥

sup
𝜆𝜆≥0,𝜈𝜈

𝐿𝐿(𝑥𝑥, 𝜆𝜆, 𝜈𝜈)
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The Dual Problem

sup
𝜆𝜆≥0,𝜈𝜈

𝑔𝑔(𝜆𝜆, 𝜈𝜈)

Equivalently,
sup
𝜆𝜆≥0,𝜈𝜈

inf
𝑥𝑥
𝐿𝐿(𝑥𝑥, 𝜆𝜆, 𝜈𝜈)

• The dual problem is always concave, even if the primal problem is not 
convex

8



Primal vs. Dual

sup
𝜆𝜆≥0,𝜈𝜈

inf
𝑥𝑥
𝐿𝐿(𝑥𝑥, 𝜆𝜆, 𝜈𝜈) ≤ inf

𝑥𝑥
sup
𝜆𝜆≥0,𝜈𝜈

𝐿𝐿(𝑥𝑥, 𝜆𝜆, 𝜈𝜈)

• Why?
– 𝑔𝑔 𝜆𝜆, 𝜈𝜈 ≤ 𝐿𝐿(𝑥𝑥, 𝜆𝜆, 𝜈𝜈) for all 𝑥𝑥

– 𝐿𝐿 𝑥𝑥′, 𝜆𝜆, 𝜈𝜈 ≤ 𝑓𝑓0(𝑥𝑥′) for any feasible 𝑥𝑥′, 𝜆𝜆 ≥ 0

• 𝑥𝑥 is feasible if it satisfies all of the constraints

– Let 𝑥𝑥∗ be the optimal solution to the primal problem and  𝜆𝜆 ≥ 0

𝑔𝑔 𝜆𝜆, 𝜈𝜈 ≤ 𝐿𝐿 𝑥𝑥∗, 𝜆𝜆, 𝜈𝜈 ≤ 𝑓𝑓0 𝑥𝑥∗
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Duality

• Under certain conditions, the two optimization problems are 
equivalent

sup
𝜆𝜆≥0,𝜈𝜈

inf
𝑥𝑥
𝐿𝐿(𝑥𝑥, 𝜆𝜆, 𝜈𝜈) = inf

𝑥𝑥
sup
𝜆𝜆≥0,𝜈𝜈

𝐿𝐿(𝑥𝑥, 𝜆𝜆, 𝜈𝜈)

– This is called strong duality

• If the inequality is strict, then we say that there is a duality gap 

– Size of gap measured by the difference between the two sides of 
the inequality
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Slater’s Condition

For any optimization problem of the form

min
𝑥𝑥∈ℝ𝑛𝑛

𝑓𝑓0(𝑥𝑥)

subject to:

𝑓𝑓𝑖𝑖 𝑥𝑥 ≤ 0, 𝑖𝑖 = 1, … ,𝑚𝑚
𝐴𝐴𝐴𝐴 = 𝑏𝑏

where 𝑓𝑓0, … , 𝑓𝑓𝑚𝑚 are convex functions, strong duality holds if there exists 
an 𝑥𝑥 such that

𝑓𝑓𝑖𝑖 𝑥𝑥 < 0, 𝑖𝑖 = 1, … ,𝑚𝑚
𝐴𝐴𝐴𝐴 = 𝑏𝑏
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Some Examples

• Minimize 𝑥𝑥2 + 𝑦𝑦2 subject to 𝑥𝑥 + 𝑦𝑦 ≥ 2

• Maximize −𝑥𝑥 log 𝑥𝑥 − 𝑦𝑦 log 𝑦𝑦 − 𝑧𝑧 log 𝑧𝑧 subject to 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 ≥ 0 and 
𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧 = 1

• Minimize 𝑥𝑥𝑥𝑥 subject to 𝑥𝑥 + 𝑦𝑦 ≥ 1



Approximate Marginal Inference

• Last week:  approximate MAP inference

– Reparamaterizations

– Linear programming over the local marginal polytope

• Approximate marginal inference (e.g., 𝑝𝑝(𝑦𝑦𝑖𝑖|𝑥𝑥))

– Sampling methods (MCMC, etc.)

– Variational methods (loopy belief propagation, TRW, etc.)
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KL Divergence

• In order to perform approximate marginal inference, we will try to find 
distributions that approximate the true distribution

– Ideally, the marginals of the approximating distribution should be 
easy to compute

• For this, we need a notion of closeness of distributions
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KL Divergence

𝐷𝐷(𝑝𝑝| 𝑞𝑞 = �
𝑥𝑥

𝑝𝑝 𝑥𝑥 log
𝑝𝑝 𝑥𝑥
𝑞𝑞 𝑥𝑥

• Called the Kullback-Leibler divergence

• 𝐷𝐷(𝑝𝑝| 𝑞𝑞 ≥ 0 with equality if and only if 𝑝𝑝 = 𝑞𝑞

• Not symmetric, 𝐷𝐷(𝑝𝑝| 𝑞𝑞 ≠ 𝐷𝐷(𝑞𝑞||𝑝𝑝)
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Jensen's Inequality

• Let 𝑓𝑓(𝑥𝑥) be a convex function and 𝑎𝑎𝑖𝑖 ≥ 0 such that ∑𝑖𝑖 𝑎𝑎𝑖𝑖 = 1

�
𝑖𝑖

𝑎𝑎𝑖𝑖𝑓𝑓(𝑥𝑥𝑖𝑖) ≥ 𝑓𝑓 �
𝑖𝑖

𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖

• Useful inequality when dealing with convex/concave functions

• When does equality hold?
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KL Divergence

𝐷𝐷(𝑝𝑝| 𝑞𝑞 = �
𝑥𝑥

𝑝𝑝 𝑥𝑥 log
𝑝𝑝 𝑥𝑥
𝑞𝑞 𝑥𝑥

• Suppose that we want to approximate the distribution 𝑝𝑝 with some 
other distribution 𝑞𝑞 in some family of distributions 𝑄𝑄

• Could minimize KL divergence in one of two ways

– arg min
𝑞𝑞∈𝑄𝑄

𝐷𝐷(𝑝𝑝||𝑞𝑞)

– arg min
𝑞𝑞∈𝑄𝑄

𝐷𝐷(𝑞𝑞||𝑝𝑝)

17



KL Divergence

𝐷𝐷(𝑝𝑝| 𝑞𝑞 = �
𝑥𝑥

𝑝𝑝 𝑥𝑥 log
𝑝𝑝 𝑥𝑥
𝑞𝑞 𝑥𝑥

• Suppose that we want to approximate the distribution 𝑝𝑝 with some 
other distribution 𝑞𝑞 in some family of distributions 𝑄𝑄

• Could minimize KL divergence in one of two ways

– arg min
𝑞𝑞∈𝑄𝑄

𝐷𝐷(𝑝𝑝||𝑞𝑞)

– arg min
𝑞𝑞∈𝑄𝑄

𝐷𝐷(𝑞𝑞||𝑝𝑝)

Called the M-projection

Called the I-projection
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KL Divergence

𝐷𝐷(𝑝𝑝| 𝑞𝑞 = �
𝑥𝑥

𝑝𝑝 𝑥𝑥 log
𝑝𝑝 𝑥𝑥
𝑞𝑞 𝑥𝑥

• Suppose that we want to approximate the distribution 𝑝𝑝 with some 
other distribution 𝑞𝑞 in some family of distributions 𝑄𝑄

• Could minimize KL divergence in one of two ways

– arg min
𝑞𝑞∈𝑄𝑄

𝐷𝐷(𝑝𝑝||𝑞𝑞)

– arg min
𝑞𝑞∈𝑄𝑄

𝐷𝐷(𝑞𝑞||𝑝𝑝)

As hard as the original inference problem

Potentially easier…
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Variational Inference

• Let's let 𝑝𝑝 𝑥𝑥 = 1
𝑍𝑍
∏𝑐𝑐 𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐 be the distribution that we want to 

approximate with distribution 𝑞𝑞

𝐷𝐷(𝑞𝑞| 𝑝𝑝 = �
𝑥𝑥

𝑞𝑞 𝑥𝑥 log
𝑞𝑞 𝑥𝑥
𝑝𝑝 𝑥𝑥

= �
𝑥𝑥

𝑞𝑞 𝑥𝑥 log 𝑞𝑞(𝑥𝑥) −�
𝑥𝑥

𝑞𝑞 𝑥𝑥 log 𝑝𝑝 𝑥𝑥

= −𝐻𝐻(𝑞𝑞) −�
𝑥𝑥

𝑞𝑞 𝑥𝑥 log 𝑝𝑝 𝑥𝑥

= −𝐻𝐻(𝑞𝑞) + log 𝑍𝑍 −�
𝑥𝑥

�
𝐶𝐶

𝑞𝑞 𝑥𝑥 log𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐

= −𝐻𝐻(𝑞𝑞) + log 𝑍𝑍 −�
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝑞𝑞𝐶𝐶 𝑥𝑥𝐶𝐶 log𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐
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Variational Inference

• Let's let 𝑝𝑝 𝑥𝑥 = 1
𝑍𝑍
∏𝑐𝑐 𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐 be the distribution that we want to 

approximate with distribution 𝑞𝑞

𝐷𝐷(𝑞𝑞| 𝑝𝑝 = �
𝑥𝑥

𝑞𝑞 𝑥𝑥 log
𝑞𝑞 𝑥𝑥
𝑝𝑝 𝑥𝑥

= �
𝑥𝑥

𝑞𝑞 𝑥𝑥 log 𝑞𝑞(𝑥𝑥) −�
𝑥𝑥

𝑞𝑞 𝑥𝑥 log 𝑝𝑝 𝑥𝑥

= −𝐻𝐻 𝑞𝑞 −�
𝑥𝑥

𝑞𝑞 𝑥𝑥 log 𝑝𝑝 𝑥𝑥

= −𝐻𝐻 𝑞𝑞 + log 𝑍𝑍 −�
𝑥𝑥

�
𝐶𝐶

𝑞𝑞 𝑥𝑥 log𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐

= −𝐻𝐻 𝑞𝑞 + log 𝑍𝑍 −�
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝑞𝑞𝐶𝐶 𝑥𝑥𝐶𝐶 log𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐

Where have we 
seen this before?
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MAP Integer Program

max
𝜏𝜏

�
𝑖𝑖∈𝑉𝑉

�
𝑥𝑥𝑖𝑖

𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 log𝜙𝜙𝑖𝑖 𝑥𝑥𝑖𝑖 + �
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸

�
𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗

𝜏𝜏𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗 log𝜓𝜓𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗)

such that

For all 𝑖𝑖 ∈ 𝑉𝑉

For all 𝑖𝑖, 𝑗𝑗 ∈ 𝐸𝐸, 𝑥𝑥𝑖𝑖

For all 𝑖𝑖 ∈ 𝑉𝑉, 𝑥𝑥𝑖𝑖

For all 𝑖𝑖, 𝑗𝑗 ∈ 𝐸𝐸, 𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗

�
𝑥𝑥𝑖𝑖

𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 = 1

�
𝑥𝑥𝑗𝑗

𝜏𝜏𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) = 𝜏𝜏𝑖𝑖(𝑥𝑥𝑖𝑖)

𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 ∈ {0,1}

𝜏𝜏𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗 ∈ {0,1}
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Variational Inference

• Let's let 𝑝𝑝 𝑥𝑥 = 1
𝑍𝑍
∏𝑐𝑐 𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐 be the distribution that we want to 

approximate with distribution 𝑞𝑞

𝐷𝐷(𝑞𝑞| 𝑝𝑝 = −𝐻𝐻 𝑞𝑞 + log 𝑍𝑍 −�
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝑞𝑞𝐶𝐶 𝑥𝑥𝐶𝐶 log𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐

• Using the observation that the KL divergence is non-negative

log 𝑍𝑍 ≥ 𝐻𝐻 𝑞𝑞 + �
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝑞𝑞𝐶𝐶 𝑥𝑥𝐶𝐶 log𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐
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Variational Inference

• Let's let 𝑝𝑝 𝑥𝑥 = 1
𝑍𝑍
∏𝑐𝑐 𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐 be the distribution that we want to 

approximate with distribution 𝑞𝑞

𝐷𝐷(𝑞𝑞| 𝑝𝑝 = −𝐻𝐻 𝑞𝑞 + log 𝑍𝑍 −�
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝑞𝑞𝐶𝐶 𝑥𝑥𝐶𝐶 log𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐

• Using the observation that the KL divergence is non-negative

log 𝑍𝑍 ≥ 𝐻𝐻(𝑞𝑞) + �
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝑞𝑞𝐶𝐶 𝑥𝑥𝐶𝐶 log𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐

– This lower bound holds for any 𝑞𝑞
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Variational Inference

• Let's let 𝑝𝑝 𝑥𝑥 = 1
𝑍𝑍
∏𝑐𝑐 𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐 be the distribution that we want to 

approximate with distribution 𝑞𝑞

𝐷𝐷(𝑞𝑞| 𝑝𝑝 = −𝐻𝐻 𝑞𝑞 + log 𝑍𝑍 −�
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝑞𝑞𝐶𝐶 𝑥𝑥𝐶𝐶 log𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐

• Using the observation that the KL divergence is non-negative

log 𝑍𝑍 ≥ 𝐻𝐻 𝑞𝑞 + �
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝑞𝑞𝐶𝐶 𝑥𝑥𝐶𝐶 log𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐

Maximizing this over 𝑞𝑞 gives 
equality
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Variational Inference

log 𝑍𝑍 ≥ 𝐻𝐻(𝑞𝑞) + �
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝑞𝑞𝐶𝐶 𝑥𝑥𝐶𝐶 log𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐

• The right hand side is a concave function of 𝑞𝑞

• Despite that, this optimization problem is hard!  (surprised?)

– Exponentially many distributions, 𝑞𝑞 𝑥𝑥
We need a more compact way to express them

– Computing the entropy is non-trivial
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Variational Inference

log 𝑍𝑍 ≥ 𝐻𝐻(𝑞𝑞) + �
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝑞𝑞𝐶𝐶 𝑥𝑥𝐶𝐶 log𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐

• Two kinds of methods that are used to deal with these difficulties

– Mean-field methods:  assume that the approximating distribution 
factorizes as 𝑞𝑞 𝑥𝑥 ∝ ∏𝑖𝑖∈𝑉𝑉 𝑞𝑞𝑖𝑖 𝑥𝑥𝑖𝑖

• Similar idea to naïve Bayes

– Relaxation based methods:  replace hard pieces of the 
optimization with easier optimization problems

• Similar to the MAP IP -> MAP LP relaxation
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Relaxation Approach

log 𝑍𝑍 ≥ 𝐻𝐻(𝑞𝑞) + �
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝑞𝑞𝐶𝐶 𝑥𝑥𝐶𝐶 log𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐

• To handle the representation problem, we can use the same LP 
relaxation trick that we did before

• For each 𝜏𝜏 in the marginal polytope, we can rewrite the RHS as

log 𝑍𝑍 ≥ 𝐻𝐻 𝜏𝜏 + �
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝜏𝜏𝐶𝐶 𝑥𝑥𝐶𝐶 log𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐
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Relaxation Approach

log 𝑍𝑍 ≥ 𝐻𝐻(𝑞𝑞) + �
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝑞𝑞𝐶𝐶 𝑥𝑥𝐶𝐶 log𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐

• To handle the representation problem, we can use the same LP 
relaxation trick that we did before

• For each 𝜏𝜏 in the marginal polytope, we can rewrite the RHS as

log 𝑍𝑍 ≥ 𝐻𝐻(𝜏𝜏) + �
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝜏𝜏𝐶𝐶 𝑥𝑥𝐶𝐶 log𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐

Maximum entropy over all 𝜏𝜏 with 
these marginals 29



Relaxation Approach

max
𝜏𝜏∈M

𝐻𝐻 𝜏𝜏 + �
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝜏𝜏𝐶𝐶 𝑥𝑥𝐶𝐶 log𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐

• Marginal polytope, 𝑀𝑀, is intractable to optimize over

• Use the local polytope, 𝑇𝑇!

�
𝑥𝑥𝐶𝐶∖𝑖𝑖

𝜏𝜏𝐶𝐶 𝑥𝑥𝐶𝐶 = 𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶, 𝑖𝑖 ∈ 𝑉𝑉

�
𝑥𝑥𝑖𝑖

𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 = 1 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖 ∈ 𝑉𝑉

30



Relaxation Approach

max
𝜏𝜏∈𝐓𝐓

𝐻𝐻(𝜏𝜏) + �
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝜏𝜏𝐶𝐶 𝑥𝑥𝐶𝐶 log𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐

• Even with the polytope relaxation, the optimization problem still 
remains challenging as computing the entropy remains nontrivial

– We will need to approximate the entropy as well

– For which distributions is it easy to compute the entropy?
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Tree Reparameterization

• On a tree, the joint distribution factorizes in a special way

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 =
1
𝑍𝑍′
�
𝑖𝑖∈𝑉𝑉

𝑝𝑝𝑖𝑖(𝑥𝑥𝑖𝑖) �
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸

𝑝𝑝𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗)
𝑝𝑝𝑖𝑖 𝑥𝑥𝑖𝑖 𝑝𝑝𝑗𝑗(𝑥𝑥𝑗𝑗)

• 𝑝𝑝𝑖𝑖 is the marginal distribution of the 𝑖𝑖𝑡𝑡𝑡 variable and 𝑝𝑝𝑖𝑖𝑖𝑖 is the max-
marginal distribution for the edge 𝑖𝑖, 𝑗𝑗 ∈ 𝐸𝐸

• This applies to “clique trees” as well (i.e., when the factor graph is a 
tree)
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Tree Reparameterization

• On a tree, the joint distribution factorizes in a special way

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 =
1
𝑍𝑍′
�
𝑖𝑖∈𝑉𝑉

𝑝𝑝𝑖𝑖(𝑥𝑥𝑖𝑖)�
𝐶𝐶

𝑝𝑝𝐶𝐶(𝑥𝑥𝐶𝐶)
∏𝑖𝑖∈𝐶𝐶 𝑝𝑝𝑖𝑖 𝑥𝑥𝑖𝑖

• 𝑝𝑝𝑖𝑖 is the marginal distribution of the 𝑖𝑖𝑡𝑡𝑡 variable and 𝑝𝑝𝑖𝑖𝑖𝑖 is the max-
marginal distribution for the edge 𝑖𝑖, 𝑗𝑗 ∈ 𝐸𝐸

• This applies to “clique trees” as well (i.e., when the factor graph is a 
tree)
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Entropy of a Tree

• Given this factorization, we can easily compute the entropy of a tree 
structured distribution

𝐻𝐻𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = −�
𝑖𝑖∈V

�
𝑥𝑥𝑖𝑖

𝑝𝑝𝑖𝑖 𝑥𝑥𝑖𝑖 log 𝑝𝑝𝑖𝑖(𝑥𝑥𝑖𝑖) −�
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝑝𝑝𝐶𝐶 𝑥𝑥𝐶𝐶 log
𝑝𝑝𝐶𝐶(𝑥𝑥𝐶𝐶)

∏𝑖𝑖∈𝐶𝐶 𝑝𝑝𝑖𝑖 𝑥𝑥𝑖𝑖

• This only depends on the marginals

• Use this as an approximation for general distributions!
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Bethe Free Energy

• Combining these two approximations gives us the so-called Bethe 
free energy approximation

max
𝜏𝜏∈𝐓𝐓

𝐻𝐻𝐵𝐵 𝜏𝜏 + �
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝜏𝜏𝐶𝐶 𝑥𝑥𝐶𝐶 log𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐

where

𝐻𝐻𝐵𝐵 𝜏𝜏 = −�
𝑖𝑖∈V

�
𝑥𝑥𝑖𝑖

𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 log 𝜏𝜏𝑖𝑖(𝑥𝑥𝑖𝑖) −�
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝜏𝜏𝐶𝐶 𝑥𝑥𝐶𝐶 log
𝜏𝜏𝐶𝐶(𝑥𝑥𝐶𝐶)

∏𝑖𝑖∈𝐶𝐶 𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖
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Bethe Free Energy

max
𝜏𝜏∈𝐓𝐓

𝐻𝐻𝐵𝐵 𝜏𝜏 + �
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝜏𝜏𝐶𝐶 𝑥𝑥𝐶𝐶 log𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐

• This is not a concave optimization problem for general graphs

– It is still difficult to maximize

– However, fixed points of loopy belief propagation correspond to 
saddle points of this objective over the local marginal polytope
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