

CS 6347

Lecture 8 & 9

Lagrange Multipliers & Varitional Bounds

General Optimization

$$\min_{x\in\mathbb{R}^n}f_0(x)$$

subject to:

$$f_i(x) \le 0,$$
 $i = 1, ..., m$
 $h_i(x) = 0,$ $i = 1, ..., p$

General Optimization

 f_0 is not necessarily convex

subject to:

$$f_i(x) \le 0,$$
 $i = 1, ..., m$
 $h_i(x) = 0,$ $i = 1, ..., p$

General Optimization

$$\min_{x\in\mathbb{R}^n}f_0(x)$$

subject to:

$$\begin{cases} f_i(x) \le 0, \\ h_i(x) = 0, \end{cases}$$
 $i = 1, ..., m$ $i = 1, ..., p$

Constraints can be arbitrary functions

Lagrangian

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

- Incorporate constraints into a new objective function
- $\lambda \geq 0$ and ν are vectors of *Lagrange multipliers*
- The Lagrange multipliers can be thought of as soft constraints

Duality

Construct a dual function by minimizing the Lagrangian over the primal variables

$$g(\lambda, \nu) = \inf_{x} L(x, \lambda, \nu)$$

• $g(\lambda, \nu) = -\infty$ whenever the Lagrangian is not bounded from below for a fixed λ and ν

The Primal Problem

$$\min_{x \in \mathbb{R}^n} f_0(x)$$

subject to:

$$f_i(x) \le 0,$$
 $i = 1, ..., m$
 $h_i(x) = 0,$ $i = 1, ..., p$

Equivalently,

$$\inf_{x} \sup_{\lambda \geq 0, \nu} L(x, \lambda, \nu)$$

The Dual Problem

$$\sup_{\lambda \geq 0, \nu} g(\lambda, \nu)$$

Equivalently,

$$\sup_{\lambda \ge 0, \nu} \inf_{x} L(x, \lambda, \nu)$$

 The dual problem is always concave, even if the primal problem is not convex

Primal vs. Dual

$$\sup_{\lambda \ge 0, \nu} \inf_{x} L(x, \lambda, \nu) \le \inf_{x} \sup_{\lambda \ge 0, \nu} L(x, \lambda, \nu)$$

- Why?
 - $-g(\lambda,\nu) \le L(x,\lambda,\nu)$ for all x
 - $-L(x',\lambda,\nu) \leq f_0(x')$ for any feasible $x',\lambda \geq 0$
 - x is feasible if it satisfies all of the constraints
 - Let x^* be the optimal solution to the primal problem and $\lambda \geq 0$

$$g(\lambda, \nu) \le L(x^*, \lambda, \nu) \le f_0(x^*)$$

Duality

Under certain conditions, the two optimization problems are equivalent

$$\sup_{\lambda \ge 0, \nu} \inf_{x} L(x, \lambda, \nu) = \inf_{x} \sup_{\lambda \ge 0, \nu} L(x, \lambda, \nu)$$

- This is called strong duality
- If the inequality is strict, then we say that there is a duality gap
 - Size of gap measured by the difference between the two sides of the inequality

Slater's Condition

For any optimization problem of the form

$$\min_{x\in\mathbb{R}^n} f_0(x)$$

subject to:

$$f_i(x) \le 0, \qquad i = 1, ..., m$$

 $Ax = b$

where f_0, \ldots, f_m are convex functions, strong duality holds if there exists an x such that

$$f_i(x) < 0, \qquad i = 1, \dots, m$$

 $Ax = b$

Some Examples

- Minimize $x^2 + y^2$ subject to $x + y \ge 2$
- Maximize $-x \log x y \log y z \log z$ subject to $x, y, z \ge 0$ and x + y + z = 1
- Minimize xy subject to $x + y \ge 1$

Approximate Marginal Inference

- Last week: approximate MAP inference
 - Reparamaterizations
 - Linear programming over the local marginal polytope
- Approximate marginal inference (e.g., $p(y_i|x)$)
 - Sampling methods (MCMC, etc.)
 - Variational methods (loopy belief propagation, TRW, etc.)

- In order to perform approximate marginal inference, we will try to find distributions that approximate the true distribution
 - Ideally, the marginals of the approximating distribution should be easy to compute
- For this, we need a notion of closeness of distributions

$$D(p||q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)}$$

- Called the Kullback-Leibler divergence
- $D(p||q) \ge 0$ with equality if and only if p = q
- Not symmetric, $D(p||q) \neq D(q||p)$

Jensen's Inequality

• Let f(x) be a convex function and $a_i \ge 0$ such that $\sum_i a_i = 1$

$$\sum_{i} a_{i} f(x_{i}) \ge f\left(\sum_{i} a_{i} x_{i}\right)$$

- Useful inequality when dealing with convex/concave functions
- When does equality hold?

$$D(p||q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)}$$

- Suppose that we want to approximate the distribution p with some other distribution q in some family of distributions Q
- Could minimize KL divergence in one of two ways

$$-\arg\min_{q\in Q}D(p||q)$$

$$-\arg\min_{q\in Q}D(q||p)$$

$$D(p||q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)}$$

- Suppose that we want to approximate the distribution p with some other distribution q in some family of distributions Q
- Could minimize KL divergence in one of two ways

$$-\arg\min_{q\in Q}D(p||q)$$

Called the M-projection

$$-\arg\min_{q\in Q}D(q||p)$$

Called the I-projection

$$D(p||q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)}$$

- Suppose that we want to approximate the distribution p with some other distribution q in some family of distributions Q
- Could minimize KL divergence in one of two ways

$$-\arg\min_{q\in Q}D(p||q)$$

As hard as the original inference problem

 $-\arg\min_{q\in Q} D(q||p)$

Potentially easier...

• Let's let $p(x) = \frac{1}{Z} \prod_c \psi_c(x_c)$ be the distribution that we want to approximate with distribution q

$$D(q||p) = \sum_{x} q(x) \log \frac{q(x)}{p(x)}$$

$$= \sum_{x} q(x) \log q(x) - \sum_{x} q(x) \log p(x)$$

$$= -H(q) - \sum_{x} q(x) \log p(x)$$

$$= -H(q) + \log Z - \sum_{x} \sum_{c} q(x) \log \psi_{c}(x_{c})$$

$$= -H(q) + \log Z - \sum_{c} \sum_{x \in C} q_{c}(x_{c}) \log \psi_{c}(x_{c})$$

• Let's let $p(x) = \frac{1}{Z} \prod_c \psi_c(x_c)$ be the distribution that we want to approximate with distribution q

$$D(q||p) = \sum_{x} q(x) \log \frac{q(x)}{p(x)}$$

$$= \sum_{x} q(x) \log q(x) - \sum_{x} q(x) \log p(x)$$

$$= -H(q) - \sum_{x} q(x) \log p(x)$$

$$= -H(q) + \log Z - \sum_{x} \sum_{c} q(x) \log \psi_{c}(x_{c})$$
Where have we seen this before?
$$= -H(q) + \log Z - \sum_{c} \sum_{x} q_{c}(x_{c}) \log \psi_{c}(x_{c})$$

MAP Integer Program

$$\max_{i \in V} \sum_{x_i} \tau_i(x_i) \log \phi_i(x_i) + \sum_{(i,j) \in E} \sum_{x_i,x_j} \tau_{ij}(x_i,x_j) \log \psi_{ij}(x_i,x_j)$$

such that

$$\sum_{x_i} \tau_i(x_i) = 1$$

For all $i \in V$

$$\sum_{x_i} \tau_{ij}(x_i, x_j) = \tau_i(x_i)$$

For all $(i,j) \in E$, x_i

$$\tau_i(x_i) \in \{0,1\}$$

For all $i \in V$, x_i

$$\tau_{ij}(x_i, x_j) \in \{0, 1\}$$

For all $(i,j) \in E$, x_i , x_j

• Let's let $p(x) = \frac{1}{Z} \prod_c \psi_c(x_c)$ be the distribution that we want to approximate with distribution q

$$D(q||p) = -H(q) + \log Z - \sum_{C} \sum_{x_{C}} q_{C}(x_{C}) \log \psi_{C}(x_{C})$$

Using the observation that the KL divergence is non-negative

$$\log Z \ge H(q) + \sum_{C} \sum_{x_C} q_C(x_C) \log \psi_C(x_C)$$

• Let's let $p(x) = \frac{1}{Z} \prod_c \psi_c(x_c)$ be the distribution that we want to approximate with distribution q

$$D(q||p) = -H(q) + \log Z - \sum_{C} \sum_{x_{C}} q_{C}(x_{C}) \log \psi_{C}(x_{C})$$

Using the observation that the KL divergence is non-negative

$$\log Z \ge H(q) + \sum_{C} \sum_{x_C} q_C(x_C) \log \psi_C(x_C)$$

- This lower bound holds for any q

• Let's let $p(x) = \frac{1}{Z} \prod_c \psi_c(x_c)$ be the distribution that we want to approximate with distribution q

$$D(q||p) = -H(q) + \log Z - \sum_{C} \sum_{x_{C}} q_{C}(x_{C}) \log \psi_{C}(x_{C})$$

Using the observation that the KL divergence is non-negative

$$\log Z \ge H(q) + \sum_{C} \sum_{x_{C}} q_{C}(x_{C}) \log \psi_{C}(x_{C})$$

Maximizing this over q gives equality

$$\log Z \ge H(q) + \sum_{C} \sum_{x_C} q_C(x_C) \log \psi_C(x_C)$$

- The right hand side is a concave function of q
- Despite that, this optimization problem is hard! (surprised?)
 - Exponentially many distributions, q(x)We need a more compact way to express them
 - Computing the entropy is non-trivial

$$\log Z \ge H(q) + \sum_{C} \sum_{x_C} q_C(x_C) \log \psi_C(x_C)$$

- Two kinds of methods that are used to deal with these difficulties
 - Mean-field methods: assume that the approximating distribution factorizes as $q(x) \propto \prod_{i \in V} q_i(x_i)$
 - Similar idea to naïve Bayes
 - Relaxation based methods: replace hard pieces of the optimization with easier optimization problems
 - Similar to the MAP IP -> MAP LP relaxation

$$\log Z \ge H(q) + \sum_{C} \sum_{x_C} q_C(x_C) \log \psi_C(x_C)$$

- To handle the representation problem, we can use the same LP relaxation trick that we did before
- For each τ in the marginal polytope, we can rewrite the RHS as

$$\log Z \ge H(\tau) + \sum_{C} \sum_{x_C} \tau_C(x_C) \log \psi_C(x_C)$$

$$\log Z \ge H(q) + \sum_{C} \sum_{x_C} q_C(x_C) \log \psi_C(x_C)$$

- To handle the representation problem, we can use the same LP relaxation trick that we did before
- For each τ in the marginal polytope, we can rewrite the RHS as

$$\log Z \geq H(\tau) + \sum_{C} \sum_{x_C} \tau_C(x_C) \log \psi_C(x_C)$$

$$\max_{\tau \in M} H(\tau) + \sum_{C} \sum_{x_C} \tau_C(x_C) \log \psi_C(x_C)$$

- Marginal polytope, M, is intractable to optimize over
- Use the local polytope, T!

$$\sum_{x_{C\setminus i}} \tau_C(x_C) = \tau_i(x_i) \text{ for all } C, i \in V$$

$$\sum_{x_i} \tau_i(x_i) = 1 \text{ for all } i \in V$$

$$\max_{\tau \in \mathbf{T}} H(\tau) + \sum_{C} \sum_{x_C} \tau_C(x_C) \log \psi_C(x_C)$$

- Even with the polytope relaxation, the optimization problem still remains challenging as computing the entropy remains nontrivial
 - We will need to approximate the entropy as well
 - For which distributions is it easy to compute the entropy?

Tree Reparameterization

On a tree, the joint distribution factorizes in a special way

$$p(x_1, ..., x_n) = \frac{1}{Z'} \prod_{i \in V} p_i(x_i) \prod_{(i,j) \in E} \frac{p_{ij}(x_i, x_j)}{p_i(x_i)p_j(x_j)}$$

- p_i is the marginal distribution of the i^{th} variable and p_{ij} is the maxmarginal distribution for the edge $(i,j) \in E$
- This applies to "clique trees" as well (i.e., when the factor graph is a tree)

Tree Reparameterization

On a tree, the joint distribution factorizes in a special way

$$p(x_1, ..., x_n) = \frac{1}{Z'} \prod_{i \in V} p_i(x_i) \prod_{C} \frac{p_C(x_C)}{\prod_{i \in C} p_i(x_i)}$$

- p_i is the marginal distribution of the i^{th} variable and p_{ij} is the maxmarginal distribution for the edge $(i, j) \in E$
- This applies to "clique trees" as well (i.e., when the factor graph is a tree)

Entropy of a Tree

 Given this factorization, we can easily compute the entropy of a tree structured distribution

$$H_{Tree} = -\sum_{i \in V} \sum_{x_i} p_i(x_i) \log p_i(x_i) - \sum_{C} \sum_{x_C} p_C(x_C) \log \frac{p_C(x_C)}{\prod_{i \in C} p_i(x_i)}$$

- This only depends on the marginals
- Use this as an approximation for general distributions!

Bethe Free Energy

Combining these two approximations gives us the so-called Bethe free energy approximation

$$\max_{\tau \in \mathbf{T}} H_B(\tau) + \sum_C \sum_{x_C} \tau_C(x_C) \log \psi_C(x_C)$$

where

$$H_B(\tau) = -\sum_{i \in V} \sum_{x_i} \tau_i(x_i) \log \tau_i(x_i) - \sum_{C} \sum_{x_C} \tau_C(x_C) \log \frac{\tau_C(x_C)}{\prod_{i \in C} \tau_i(x_i)}$$

Bethe Free Energy

$$\max_{\tau \in \mathbf{T}} H_B(\tau) + \sum_C \sum_{x_C} \tau_C(x_C) \log \psi_C(x_C)$$

- This is not a concave optimization problem for general graphs
 - It is still difficult to maximize
 - However, fixed points of loopy belief propagation correspond to saddle points of this objective over the local marginal polytope

