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Lecture 10

MCMC Sampling Methods



Last Time

• Sampling from discrete univariate distributions

– Rejection sampling

• To sample 𝑝(𝑦), draw samples from 𝑝(𝑥′, 𝑦′) and reject 
those with 𝑦 ≠ 𝑦′

– Importance sampling

• Introduce a proposal distribution 𝑞(𝑥) whose support 
contains the support of 𝑝(𝑥, 𝑦)

• Sample from 𝑞 and reweight the samples to generate 
samples from 𝑝
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Today

• We saw how to sample from Bayesian networks, but how do 
we sample from MRFs?

– Can’t even compute 𝑝 𝑥 =
1

𝑍
ς𝑐∈𝐶𝜓𝑐(𝑥𝑐) without 

knowing the partition function

– No well-defined ordering in the model

• To sample from MRFs, we will need fancier forms of sampling

– So-called Markov Chain Monte Carlo (MCMC) methods
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Markov Chains

• A Markov chain is a sequence of random variables 𝑋1, … , 𝑋𝑛 ∈
𝑆 such that

𝑝 𝑥𝑛+1 𝑥1, … , 𝑥𝑛 = 𝑝 𝑥𝑛+1 𝑥𝑛

• The set 𝑆 is called the state space, and 𝑝 𝑋𝑛+1 = 𝑏 𝑋𝑛 = 𝑎
is the probability of transitioning from state 𝑎 to state 𝑏 at 
step 𝑛

• As a Bayesian network or a MRF, the joint distribution over 
the first 𝑛 steps factorizes over a chain
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Markov Chains

• When the probability of transitioning between two states 
does not depend on time, we call it a time homogeneous 
Markov chain

– Represent it by a 𝑆 × |𝑆| transition matrix 𝑃

• 𝑃𝑖𝑗 = 𝑝(𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖)

• 𝑃 is a stochastic matrix (all rows sum to one)

– Draw it as a directed graph over the state space with an 
arrow from 𝑎 ∈ 𝑆 to 𝑏 ∈ 𝑆 labelled by the probability of 
transitioning from 𝑎 to 𝑏
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Markov Chains

• Given some initial distribution over states 𝑝(𝑥1)

– Represent 𝑝(𝑥1) as a length |𝑆| vector, 𝜋1

– The probability distribution after 𝑛 steps is given by

𝜋𝑛 = 𝜋1𝑃
𝑛

• Typically interested in the long term (i.e., what is the state of 
the system when 𝑛 is large)

• In particular, we are interested in steady-state distributions 𝜇
such that 𝜇 = 𝜇𝑃

– A given chain may or may not converge to a steady state
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Markov Chains

• Theorem:  every irreducible, aperiodic Markov chain 
converges to a unique steady state distribution independent 
of the initial distribution

– Irreducible:  the directed graph of transitions is strongly 
connected (i.e., there is a directed path between every 
pair of nodes)

– Aperiodic:  𝑝 𝑋𝑛 = 𝑖 𝑋1 = 𝑖) > 0 for all large enough 𝑛

• If the state graph is strongly connected and there is a non-
zero probability of remaining in any state, then the chain is 
irreducible and aperiodic
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Detailed Balance

• Lemma:  a vector of probabilities 𝜇 is a stationary distribution 
of the MC with transition matrix 𝑃 if for all 𝑖 and 𝑗,

𝜇𝑖𝑃𝑖𝑗 = 𝜇𝑗𝑃𝑗𝑖

Proof:

𝜇𝑃 𝑗 =

𝑖

𝜇𝑖𝑃𝑖𝑗 =

𝑖

𝜇𝑗𝑃𝑗𝑖 = 𝜇𝑗

So, 𝜇𝑃 = 𝜇
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MCMC Sampling

• Markov chain Monte Carlo sampling

– Construct a Markov chain where the stationary distribution 
is the distribution we want to sample from

– Use the Markov chain to generate samples from the 
distribution

– Combine with the same Monte Carlo estimation strategy 
as before

– Will let us sample conditional distributions easily as well!

9



Gibbs Sampling

• Choose an initial assignment 𝑥0

• Fix an ordering of the variables (any order is fine)

• For each 𝑗 ∈ 𝑉 in order

– Draw a sample 𝑧 from 𝑝(𝑥𝑗|𝑥1
𝑡+1, … , 𝑥𝑗−1

𝑡+1, 𝑥𝑗+1
𝑡 , … , 𝑥 𝑉

𝑡 )

– Set 𝑥𝑗
𝑡+1 = 𝑧

• Set 𝑡 ← 𝑡 + 1 and repeat
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Gibbs Sampling

• If 𝑝 𝑥 =
1

𝑍
ς𝐶𝜓𝐶(𝑥𝐶), we can use the conditional 

independence assumptions to sample from 𝑝(𝑥𝑗|𝑥𝑁 𝑗 )

– This lets us exploit the graph structure for sampling

– For Bayesian networks, reduces to 𝑝(𝑋𝑗|𝑥𝑀𝐵 𝑗 ) where 

𝑀𝐵(𝑗) is 𝑗’s Markov blanket (𝑗’s parents, children, and its 
children's parents)
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Gibbs Sampling
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A B

C

D

𝐴 𝑃(𝐴)

0 .3

1 .7

𝐵 𝑃(𝐵)

0 .4

1 .6

𝐴 𝐵 𝐶 𝑃(𝐶|𝐴, 𝐵)

0 0 0 .1

0 0 1 .9

0 1 0 .2

0 1 1 .8

1 0 0 .01

1 0 1 .99

1 1 0 .25

1 1 1 .75

𝐶 𝐷 𝑃(𝐷|𝐶)

0 0 .3

0 1 .7

1 0 .4

1 1 .6

A B C D

0 0 0 0

(1) Sample from 𝑝 𝑥𝐴 𝑥𝐵 = 0, 𝑥𝐶 = 0, 𝑥𝐷 = 0
Using Bayes rule, 𝑝 𝑥𝐴 𝑥𝐵 = 0, 𝑥𝐶 = 0 ∝ 𝑝 𝑥𝐴 𝑝 𝑥𝐶 = 0 𝑥𝐴, 𝑥𝐵 = 0
𝑝 𝑥𝐴 = 0 𝑥𝐵 = 0, 𝑥𝐶 = 0 ∝ .3 ⋅ .1 = .03
𝑝 𝑥𝐴 = 1 𝑥𝐵 = 0, 𝑥𝐶 = 0 ∝ .7 ⋅ .01 = .007

Order: A, B, C, D, A, B, C, D, …



Gibbs Sampling
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A B

C

D

𝐴 𝑃(𝐴)

0 .3

1 .7

𝐵 𝑃(𝐵)

0 .4

1 .6

𝐴 𝐵 𝐶 𝑃(𝐶|𝐴, 𝐵)

0 0 0 .1

0 0 1 .9

0 1 0 .2

0 1 1 .8

1 0 0 .01

1 0 1 .99

1 1 0 .25

1 1 1 .75

𝐶 𝐷 𝑃(𝐷|𝐶)

0 0 .3

0 1 .7

1 0 .4

1 1 .6

A B C D

0 0 0 0

0

(1) Sample from 𝑝 𝑥𝐴 𝑥𝐵 = 0, 𝑥𝐶 = 0, 𝑥𝐷 = 0
Using Bayes rule, 𝑝 𝑥𝐴 𝑥𝐵 = 0, 𝑥𝐶 = 0 ∝ 𝑝 𝑥𝐴 𝑝 𝑥𝐶 = 0 𝑥𝐴, 𝑥𝐵 = 0
𝑝 𝑥𝐴 = 0 𝑥𝐵 = 0, 𝑥𝐶 = 0 ∝ .3 ⋅ .1 → .811
𝑝 𝑥𝐴 = 1 𝑥𝐵 = 0, 𝑥𝐶 = 0 ∝ .7 ⋅ .01 → .189

Order: A, B, C, D, A, B, C, D, …



Gibbs Sampling
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A B

C

D

𝐴 𝑃(𝐴)

0 .3

1 .7

𝐵 𝑃(𝐵)

0 .4

1 .6

𝐴 𝐵 𝐶 𝑃(𝐶|𝐴, 𝐵)

0 0 0 .1

0 0 1 .9

0 1 0 .2

0 1 1 .8

1 0 0 .01

1 0 1 .99

1 1 0 .25

1 1 1 .75

𝐶 𝐷 𝑃(𝐷|𝐶)

0 0 .3

0 1 .7

1 0 .4

1 1 .6

A B C D

0 0 0 0

0

(1) Sample from 𝑝 𝑥𝐵 𝑥𝐴 = 0, 𝑥𝐶 = 0, 𝑥𝐷 = 0
Using Bayes rule, 𝑝 𝑥𝐵 𝑥𝐴 = 0, 𝑥𝐶 = 0 ∝ 𝑝 𝑥𝐵 𝑝 𝑥𝐶 = 0 𝑥𝐴 = 0, 𝑥𝐵
𝑝 𝑥𝐵 = 0 𝑥𝐴 = 0, 𝑥𝐶 = 0 ∝ .4 ⋅ .1 = .04
𝑝 𝑥𝐵 = 1 𝑥𝐴 = 0, 𝑥𝐶 = 0 ∝ .6 ⋅ .2 = .12

Order: A, B, C, D, A, B, C, D, …



Gibbs Sampling
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A B

C

D

𝐴 𝑃(𝐴)

0 .3

1 .7

𝐵 𝑃(𝐵)

0 .4

1 .6

𝐴 𝐵 𝐶 𝑃(𝐶|𝐴, 𝐵)

0 0 0 .1

0 0 1 .9

0 1 0 .2

0 1 1 .8

1 0 0 .01

1 0 1 .99

1 1 0 .25

1 1 1 .75

𝐶 𝐷 𝑃(𝐷|𝐶)

0 0 .3

0 1 .7

1 0 .4

1 1 .6

A B C D

0 0 0 0

0 1

(1) Sample from 𝑝 𝑥𝐵 𝑥𝐴 = 0, 𝑥𝐶 = 0, 𝑥𝐷 = 0
Using Bayes rule, 𝑝 𝑥𝐵 𝑥𝐴 = 0, 𝑥𝐶 = 0 ∝ 𝑝 𝑥𝐵 𝑝 𝑥𝐶 = 0 𝑥𝐴 = 0, 𝑥𝐵
𝑝 𝑥𝐵 = 0 𝑥𝐴 = 0, 𝑥𝐶 = 0 ∝ .4 ⋅ .1 → .25
𝑝 𝑥𝐵 = 1 𝑥𝐴 = 0, 𝑥𝐶 = 0 ∝ .6 ⋅ .2 → .75

Order: A, B, C, D, A, B, C, D, …



Gibbs Sampling
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A B

C

D

𝐴 𝑃(𝐴)

0 .3

1 .7

𝐵 𝑃(𝐵)

0 .4

1 .6

𝐴 𝐵 𝐶 𝑃(𝐶|𝐴, 𝐵)

0 0 0 .1

0 0 1 .9

0 1 0 .2

0 1 1 .8

1 0 0 .01

1 0 1 .99

1 1 0 .25

1 1 1 .75

𝐶 𝐷 𝑃(𝐷|𝐶)

0 0 .3

0 1 .7

1 0 .4

1 1 .6

A B C D

0 0 0 0

0 1

(1) Sample from 𝑝 𝑥𝐶 𝑥𝐴 = 0, 𝑥𝐵 = 1, 𝑥𝐷 = 0
Using Bayes rule, 𝑝 𝑥𝐶 𝑥𝐴 = 0, 𝑥𝐵 = 1, 𝑥𝐷 = 0 ∝ 𝑝 𝑥𝐶|𝑥𝐴 = 0, 𝑥𝐵 = 1 𝑝 𝑥𝐷 = 0 𝑥𝐶
𝑝 𝑥𝐶 = 0 𝑥𝐴 = 0, 𝑥𝐵 = 1, 𝑥𝐷 = 0 ∝ .2 ⋅ .3 = .06
𝑝 𝑥𝐶 = 1 𝑥𝐴 = 0, 𝑥𝐵 = 1, 𝑥𝐷 = 0 ∝ .8 ⋅ .4 = .32

Order: A, B, C, D, A, B, C, D, …



Gibbs Sampling
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A B

C

D

𝐴 𝑃(𝐴)

0 .3

1 .7

𝐵 𝑃(𝐵)

0 .4

1 .6

𝐴 𝐵 𝐶 𝑃(𝐶|𝐴, 𝐵)

0 0 0 .1

0 0 1 .9

0 1 0 .2

0 1 1 .8

1 0 0 .01

1 0 1 .99

1 1 0 .25

1 1 1 .75

𝐶 𝐷 𝑃(𝐷|𝐶)

0 0 .3

0 1 .7

1 0 .4

1 1 .6

A B C D

0 0 0 0

0 1 1

(1) Sample from 𝑝 𝑥𝐶 𝑥𝐴 = 0, 𝑥𝐵 = 1, 𝑥𝐷 = 0
Using Bayes rule, 𝑝 𝑥𝐶 𝑥𝐴 = 0, 𝑥𝐵 = 1, 𝑥𝐷 = 0 ∝ 𝑝 𝑥𝐶|𝑥𝐴 = 0, 𝑥𝐵 = 1 𝑝 𝑥𝐷 = 0 𝑥𝐶
𝑝 𝑥𝐶 = 0 𝑥𝐴 = 0, 𝑥𝐵 = 1, 𝑥𝐷 = 0 ∝ .2 ⋅ .3 → .158
𝑝 𝑥𝐶 = 1 𝑥𝐴 = 0, 𝑥𝐵 = 1, 𝑥𝐷 = 0 ∝ .8 ⋅ .4 → .842

Order: A, B, C, D, A, B, C, D, …



Gibbs Sampling
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A B

C

D

𝐴 𝑃(𝐴)

0 .3

1 .7

𝐵 𝑃(𝐵)

0 .4

1 .6

𝐴 𝐵 𝐶 𝑃(𝐶|𝐴, 𝐵)

0 0 0 .1

0 0 1 .9

0 1 0 .2

0 1 1 .8

1 0 0 .01

1 0 1 .99

1 1 0 .25

1 1 1 .75

𝐶 𝐷 𝑃(𝐷|𝐶)

0 0 .3

0 1 .7

1 0 .4

1 1 .6

A B C D

0 0 0 0

0 1 1

(1) Sample from 𝑝 𝑥𝐷 𝑥𝐶 = 1
𝑝 𝑥𝐷 = 0 𝑥𝐶 = 1 = .4
𝑝 𝑥𝐷 = 1 𝑥𝐶 = 1 = .6

Order: A, B, C, D, A, B, C, D, …



Gibbs Sampling
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A B

C

D

𝐴 𝑃(𝐴)

0 .3

1 .7

𝐵 𝑃(𝐵)

0 .4

1 .6

𝐴 𝐵 𝐶 𝑃(𝐶|𝐴, 𝐵)

0 0 0 .1

0 0 1 .9

0 1 0 .2

0 1 1 .8

1 0 0 .01

1 0 1 .99

1 1 0 .25

1 1 1 .75

𝐶 𝐷 𝑃(𝐷|𝐶)

0 0 .3

0 1 .7

1 0 .4

1 1 .6

A B C D

0 0 0 0

0 1 1 0

(1) Sample from 𝑝 𝑥𝐷 𝑥𝐶 = 1
𝑝 𝑥𝐷 = 0 𝑥𝐶 = 1 = .4
𝑝 𝑥𝐷 = 1 𝑥𝐶 = 1 = .6

Order: A, B, C, D, A, B, C, D, …



Gibbs Sampling
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A B

C

D

𝐴 𝑃(𝐴)

0 .3

1 .7

𝐵 𝑃(𝐵)

0 .4

1 .6

𝐴 𝐵 𝐶 𝑃(𝐶|𝐴, 𝐵)

0 0 0 .1

0 0 1 .9

0 1 0 .2

0 1 1 .8

1 0 0 .01

1 0 1 .99

1 1 0 .25

1 1 1 .75

𝐶 𝐷 𝑃(𝐷|𝐶)

0 0 .3

0 1 .7

1 0 .4

1 1 .6

A B C D

0 0 0 0

0 1 1 0

(2) Repeat the same process to generate the next sample

Order: A, B, C, D, A, B, C, D, …



Gibbs Sampling

• Gibbs sampling forms a Markov chain

• The states of the chain are the assignments and the 
probability of transitioning from an assignment 𝑦 to an 
assignment 𝑧 (in the order 1,… , 𝑛)

𝑝 𝑧1 𝑦𝑉∖ 1 𝑝 𝑧2 𝑦𝑉∖ 1,2 , 𝑧1 …𝑝(𝑧𝑛|𝑧𝑉∖{𝑛})

• If there are no zero probability states, then the chain is 
irreducible and aperiodic (hence it converges)

• The stationary distribution is 𝑝(𝑥) – proof?
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Gibbs Sampling

• Recall that it takes time to reach the steady state distribution 
from an arbitrary starting distribution

• The mixing time is the number of samples that it takes before 
the approximate distribution is close to the steady state 
distribution

– In practice, this can take 1000s of iterations (or more)

– We typically ignore the samples for a set amount of time 
called the burn in phase and then begin producing 
samples
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Gibbs Sampling

• We can use Gibbs sampling for MRFs as well!

– We don’t need to compute the partition function to use it 
(why not?)

– Many “real” MRFs will have lots of zero probability 
assignments 

• If you don’t start with a non-zero assignment, the 
algorithm can get stuck (changing a single variable may 
not allow you to escape)

• Might not be possible to go between all possible non-
zero assignments by only flipping one variable at a time
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Metropolis-Hastings Algorithm

• This idea of choosing a transition probability between new 
assignments and the current assignments can be generalized 
beyond the transition probabilities used in Gibbs sampling

• Pick some transition function 𝑞(𝑥′|𝑥) that depends on the 
current state 𝑥

– We would ideally want the probability of transitioning 
between any two non-zero probability states to be positive
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Metropolis-Hastings Algorithm

• Choose an initial assignment 𝑥

• Sample an assignment 𝑧 from the proposal distribution 
𝑞(𝑥′|𝑥)

• Sample 𝑟 uniformly from [0,1]

• If 𝑟 < min 1,
𝑝 𝑧 𝑞(𝑥|𝑧)

𝑝 𝑥 𝑞(𝑧|𝑥)

– Set 𝑥 to 𝑧

• Else

– Leave 𝑥 unchanged
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Metropolis-Hastings Algorithm

• Choose an initial assignment 𝑥

• Sample an assignment 𝑧 from the proposal distribution 
𝑞(𝑥′|𝑥)

• Sample 𝑟 uniformly from [0,1]

• If 𝑟 < min 1,
𝑝 𝑧 𝑞(𝑥|𝑧)

𝑝 𝑥 𝑞(𝑧|𝑥)

– Set 𝑥 to 𝑧

• Else

– Leave 𝑥 unchanged
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𝑝 𝑧

𝑞 𝑧|𝑥
and 

𝑝 𝑥

𝑞 𝑥|𝑧
are like 

importance weights

The acceptance probability is 
then a function of the ratio of the 
importance of 𝑧 and the 
importance of 𝑥



Metropolis-Hastings Algorithm

• The Metropolis-Hastings algorithm produces a Markov chain 
that converges to 𝑝(𝑥) from any initial distribution (assuming 
that it is irreducible and aperiodic)

• What are some choices for 𝑞(𝑥′|𝑥)?

– Use an importance sampling distribution

– Use a uniform distribution (like a random walk)

• Gibbs sampling is a special case of this algorithm where the 
proposal distribution corresponds to the transition matrix
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