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Lecture 10

MCMC Sampling Methods



Last Time
e

 Sampling from discrete univariate distributions
— Rejection sampling

* To sample p(y), draw samples from p(x’, y") and reject
those with y # y’

— Importance sampling

* Introduce a proposal distribution g(x) whose support
contains the support of p(x, y)

* Sample from g and reweight the samples to generate
samples from p
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Today

* We saw how to sample from Bayesian networks, but how do
we sample from MRFs?

1 .
— Can’t even compute p(x) = EHCEC Y. (x.) without
knowing the partition function

— No well-defined ordering in the model
* To sample from MRFs, we will need fancier forms of sampling

— So-called Markov Chain Monte Carlo (MCMC) methods




Markov Chains
[

* A Markov chain is a sequence of random variables X4, ..., X,, €
S such that

p(xn+1|x1» ---»xn) — p(xn+1|xn )

* The set S is called the state space, and p(X,,.; = b|X,, = a)
is the probability of transitioning from state a to state b at
stepn

* As a Bayesian network or a MRF, the joint distribution over
the first n steps factorizes over a chain




Markov Chains
[

 When the probability of transitioning between two states
does not depend on time, we call it a time homogeneous
Markov chain

— Represent it by a |S| X |S] transition matrix P
Pij = pXns1 =JjlXn =1)
e P is a stochastic matrix (all rows sum to one)

— Draw it as a directed graph over the state space with an
arrow froma € S to b € S labelled by the probability of
transitioning fromato b




Markov Chains

* Given some initial distribution over states p(x;)
— Represent p(x;) as a length |S| vector, m;

— The probability distribution after n steps is given by

T, = mP"

* Typically interested in the long term (i.e., what is the state of
the system when n is large)

* In particular, we are interested in steady-state distributions u
such that u = uP

— A given chain may or may not converge to a steady state
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Markov Chains

* Theorem: every irreducible, aperiodic Markov chain

converges to a unique steady state distribution independent
of the initial distribution

— Irreducible: the directed graph of transitions is strongly
connected (i.e., there is a directed path between every
pair of nodes)

— Aperiodic: p(X,, = i| X; = i) > 0 for all large enoughn

* If the state graph is strongly connected and there is a non-
zero probability of remaining in any state, then the chain is
irreducible and aperiodic




Detailed Balance
[

* Lemma: a vector of probabilities u is a stationary distribution
of the MC with transition matrix P if for all i and j,

uiPij = pjP;

(uP); = z.uipij = z.ujpji = U;
i i

Proof:

So, uP = u




MCMC Sampling

 Markov chain Monte Carlo sampling

— Construct a Markov chain where the stationary distribution
is the distribution we want to sample from

— Use the Markov chain to generate samples from the
distribution

— Combine with the same Monte Carlo estimation strategy
as before

— Will let us sample conditional distributions easily as well!




Gibbs Sampling

e Choose an initial assignment x"
* Fix an ordering of the variables (any order is fine)

* Foreachj € Vin order
— Draw a sample z from p(x;|x{ ", ..., xjtfll, xjt+1, ., x|tV|)

— Set xjt“ = 7

e Sett « t+ 1andrepeat
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Gibbs Sampling

N
e Ifp(x) = %Hc Y (xc), we can use the conditional
independence assumptions to sample from p(x;[xy ()
— This lets us exploit the graph structure for sampling

— For Bayesian networks, reduces to p(X;|xpyp(;)) where

MB(j) is j’s Markov blanket (j’s parents, children, and its
children's parents)
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Gibbs Sampling
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(1) Sample from p(x4]lxg = 0,x, = 0,xp = 0)
Using Bayes rule, p(x4lxg = 0,x, = 0) < p(x4)p(xc = 0]x4, xg = 0)
p(x4y =0]xg =0,x, =0) x.3-.1= .03
p(xy =1lxg =0,x, =0) x.7-.01 =.007
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Gibbs Sampling

0 3 0 4 Order: A,B,C,D,A,B,C, D, ..
1 7 ° 1 6
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(1) Sample from p(x4]lxg = 0,x, = 0,xp = 0)
Using Bayes rule, p(x4lxg = 0,x, = 0) < p(x4)p(xc = 0]x4, xg = 0)
p(xy =0]xg =0,x, =0) x.3-.1->.811
p(xy =1lxg =0,x, =0) .7 -.01 - .189
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Gibbs Sampling
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(1) Sample from p(xg|lxy, = 0,x, = 0,xp = 0)
Using Bayes rule, p(xglxy = 0,x, = 0) < p(xg)p(xc = 0]xs = 0,x5)
p(xg =0|x, =0,x, =0) x.4-.1=.04
p(xg =1lx4 =0,x, =0) x.6-.2 =.12
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Gibbs Sampling

0 3 0 4 Order: A,B,C,D,A,B,C, D, ..
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(1) Sample from p(xg|lxy, = 0,x, = 0,xp = 0)
Using Bayes rule, p(xglxy = 0,x, = 0) < p(xg)p(xc = 0]xs = 0,x5)
p(xg =0|x4 =0,x, =0) x.4-.1->.25
p(xg =1lx4 =0,x, =0) x.6-.2 > .75
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Gibbs Sampling

|
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(1) Sample from p(x;|x4 = 0,x5 = 1,xp = 0)
Using Bayes rule, p(x.|lx4 = 0,x5 = 1,xp = 0) < p(x¢c|xs = 0,x5 = D)p(xp = 0]|xc)
p(xc =0|x, =0,xg =1,xp =0) x.2-.3=.06
p(xc=1lx, =0,xg =1,xp =0) «.8-.4 =.32
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Gibbs Sampling

|
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(1) Sample from p(x;|x4 = 0,x5 = 1,xp = 0)
Using Bayes rule, p(x.|lx4 = 0,x5 = 1,xp = 0) < p(x¢c|xs = 0,x5 = D)p(xp = 0]|xc)
p(xc=0|x, =0,xg =1,xp =0) x.2-.3 > .158
p(xc=1lx, =0,xg =1,xp =0) x.8-.4 - .842
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Gibbs Sampling

0 3 0 4 Order: A,B,C,D,A,B,C, D, ..
1 7 ° ° 1 6
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(1) Sample from p(xp| x, = 1)
p(xp =0|x,=1) = .4
.6

plxp =1lxc=1) =
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Gibbs Sampling

0 3 0 4 Order: A,B,C,D,A,B,C, D, ..
1 7 ° ° 1 6

P(C|A,B)
1 G 0 0 0 0
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(1) Sample from p(xp| x, = 1)
p(xp =0|x,=1) = .4
.6

plxp =1lxc=1) =
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Gibbs Sampling

0 3 0 4 Order: A,B,C,D,A,B,C, D, ..
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(2) Repeat the same process to generate the next sample
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Gibbs Sampling

* Gibbs sampling forms a Markov chain

* The states of the chain are the assignments and the
probability of transitioning from an assighnment y to an
assignment z (in the order 1, ..., n)

P(Z1 |YV\{1})P(ZZ |J’V\{1,2}» 21) .p(Zn |ZV\{n})

* If there are no zero probability states, then the chain is
irreducible and aperiodic (hence it converges)

* The stationary distribution is p(x) — proof?
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Gibbs Sampling
-

* Recall that it takes time to reach the steady state distribution
from an arbitrary starting distribution

* The mixing time is the number of samples that it takes before
the approximate distribution is close to the steady state

distribution

— In practice, this can take 1000s of iterations (or more)

— We typically ignore the samples for a set amount of time
called the burn in phase and then begin producing

samples
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Gibbs Sampling
-

* We can use Gibbs sampling for MRFs as well!

— We don’t need to compute the partition function to use it
(why not?)

— Many “real” MRFs will have lots of zero probability
assignments

* If you don’t start with a non-zero assignment, the
algorithm can get stuck (changing a single variable may
not allow you to escape)

* Might not be possible to go between all possible non-
zero assignments by only flipping one variable at a time
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Metropolis-Hastings Algorithm

* This idea of choosing a transition probability between new
assignments and the current assignments can be generalized
beyond the transition probabilities used in Gibbs sampling

 Pick some transition function q(x'|x) that depends on the
current state x

— We would ideally want the probability of transitioning
between any two non-zero probability states to be positive
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Metropolis-Hastings Algorithm

 Choose an initial assignment x

 Sample an assignment z from the proposal distribution
q(x'[x)

* Sample r uniformly from [0,1]

1 p(Z)q(xIZ)}

e Ifr< mln{ D)

— Setxtoz
e Else

— Leave x unchanged
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Metropolis-Hastings Algorithm

 Choose an initial assignment x

 Sample an assignment z from the proposal distribution

q(x'|x)

* Sample r uniformly from [0,1] b b
aCzlx) I gz 4 E

e Ifr < min {1 p(z)q(x|z)} importance weights

"p(x)q(z]x)
The acceptance probability is
— Setxtoz then a function of the ratio of the

importance of z and the

 Else importance of x

— Leave x unchanged
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Metropolis-Hastings Algorithm

 The Metropolis-Hastings algorithm produces a Markov chain

that converges to p(x) from any initial distribution (assuming
that it is irreducible and aperiodic)

* What are some choices for g(x'|x)?
— Use an importance sampling distribution
— Use a uniform distribution (like a random walk)

* Gibbs sampling is a special case of this algorithm where the
proposal distribution corresponds to the transition matrix
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