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Basics of Machine Learning



The Course So Far…

• What we’ve seen:

– How to compactly model/represent joint distributions 
using graphical models

– How to solve basic inference problems

• Exactly:  variable elimination & belief propagation

• Approximately:  LP relaxations, duality, loopy belief 
propagation, mean field, sampling
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Next Goal

• Where we are going:

– Given independent samples from a joint distribution, we 
want to estimate the graphical model that produced them

– In practice, we typically have no idea what joint 
distribution describes the data

– There might be lots of hidden variables (i.e., data that we 
can’t or didn’t observe)

– We want the “best” model for some notion of “best”
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Machine Learning

• Need a principled approach to solving these types of 
problems

– How do we determine which model is better than 
another?

– How do we measure the performance of our model on 
tasks that we care about?

• Many approaches to machine learning rephrase a learning 
problem as that of optimizing some objective that captures 
the quantities of interest
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Spam Filtering

• Given a collection of emails 𝐸1, … , 𝐸𝑛 and labels 𝐿1, … , 𝐿𝑛 ∈
{𝑠𝑝𝑎𝑚, 𝑛𝑜𝑡 𝑠𝑝𝑎𝑚} want to learn a model that detects 
whether or not an email is spam

– How might we evaluate the model that we learn?
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Spam Filtering

• Given a collection of emails 𝐸1, … , 𝐸𝑛 and labels 𝐿1, … , 𝐿𝑛 ∈
{𝑠𝑝𝑎𝑚, 𝑛𝑜𝑡 𝑠𝑝𝑎𝑚} want to learn a model that detects 
whether or not an email is spam

– How might we evaluate the model that we learn?

• This is an example of what is called a supervised learning
problem

– We are presented with labeled data, and our goal is to 
correctly predict the labels of unseen data
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Performance Measures

• Classification:  given a set of unseen emails, correctly label 
them as spam/not spam

– Classification error defined to be the number of 
misclassified emails (under the model)

– Two types of error:  training and test

• Training error:  the number of misclassified emails in 
the labelled training set

• Test error:  the number of misclassified emails in the 
unseen set
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Performance Measures

• Other prediction/inference tasks:  choose a loss function that 
reflects the task you want to solve

• Density estimation:  estimate the full joint distribution

– Error could be defined using the KL divergence between 
the learned model and the true model

• Structure estimation:  estimate the structure of the joint 
distribution (i.e., what independence properties does it 
assert)
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Machine Learning Terminology

• Overfitting:  the learned model caters too much to the data 
on which it was trained.  In the worst case, the learned model 
corresponds exactly to the training set and assigns probability 
zero to all unobserved samples

• Generalization:  the model should apply beyond the training 
set to unseen samples (independent of the true distribution)

• Cross-validation:  a method of holding out some of the 
training data in order to limit overfitting and improve 
generalization

• Regularization:  encode a “soft constraint” that prefers 
simpler models
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Bias Variance Tradeoff

• The true model may not be a member of the family of models 
that we learn

– Even with unlimited data, we will not recover the true 
solution

– This limitation is known as bias

– We can always choose more complicated models at the 
expense of computation time

• With only a few samples, many models might be a good fit 

– Small changes in the samples may result in significantly 
different models

– This type of limitation is referred to as variance
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The Learning Problem

• Given iid samples 𝑥1, … , 𝑥𝑀 from some probability 
distribution find the graphical model that best represents the 
samples from some family of graphical models

• This could entail

– Structure learning:  if the graph structure is unknown, we 
would need to learn it

– Parameter learning:  learn the parameters of the model 
(the parameters usually control the allowable potential 
functions)
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Maximum Likelihood Estimation

• Fix a family of parameterized distributions

– Each choice of the parameters produces a different distribution

– Example:  for the coloring problem on a graph 𝐺, we could treat 
the weights as parameters

• Given samples 𝑥(1), … , 𝑥(𝑀) from some unknown distribution and 
parameters 𝜃…

– The likelihood of the data is defined to be 𝑙 𝜃 =
ς𝑚 𝑝(𝑥(𝑚)|𝜃)

– Goal:  find the 𝜃 that maximizes the log-likelihood

– Example:  given samples of colorings of a graph 𝐺, find the 
weights that maximize the likelihood of observing these 
colorings
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Simple MLE

• A biased coin is described by a single parameter 𝑏 which 
corresponds to the probability of seeing heads

• Given the set of samples 𝐻,𝐻,𝐻,𝐻, 𝑇 use MLE to estimate 𝑏

(worked out on the board)
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Bayesian Inference

• MLE assumes that there exists some joint distribution 𝑝(𝑥, 𝜃)
over possible observations and choices of the parameters, but 
only works with the conditional distribution 𝑝(𝑥|𝜃)

– In practice, this is much easier than dealing with the whole 
joint distribution

– In the coin flipping example

• If we are told the bias, we can compute the probability 
that a coin comes up heads

• To compute the joint probability, 𝑝 𝑥 𝜃 𝑝(𝜃) we would 
need to choose a probability distribution over the 
biases
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Bayesian Inference

• We could also consider the posterior probability distribution 
of the parameters given the evidence

𝑝 𝜃 𝑥 =
𝑝 𝑥 𝜃 𝑝 𝜃

𝑝 𝑥
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Bayesian Inference

• We could also consider the posterior probability distribution 
of the parameters given the evidence

𝑝 𝜃 𝑥 =
𝑝 𝑥 𝜃 𝑝 𝜃

𝑝 𝑥

• Prior captures our previous knowledge about the parameters
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Bayesian Inference

• We could also consider the posterior probability distribution 
of the parameters given the evidence

𝑝 𝜃 𝑥 =
𝑝 𝑥 𝜃 𝑝 𝜃

𝑝 𝑥

• Prior captures our previous knowledge about the parameters

• Bayesian inference computes the posterior probability 
distribution over 𝜃 given the observed samples

• MAP inference maximizes the posterior probability over 𝜃
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Simple MAP Inference

• A biased coin is described by a single parameter 𝑏 which 
corresponds to the probability of seeing heads

• Given the set of samples 𝐻,𝐻,𝐻,𝐻, 𝑇 use MAP inference to 
estimate 𝑏

• What prior distribution should we pick for 𝑝 𝑏 ?
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Simple MAP Inference

• A biased coin is described by a single parameter 𝑏 which 
corresponds to the probability of seeing heads

• Given the set of samples 𝐻,𝐻,𝐻,𝐻, 𝑇 use MAP inference to 
estimate 𝑏

• What prior distribution should we pick for 𝑝 𝑏 ?

– Uniform on [0,1]

– Beta distribution:  𝑝 𝑏 ∝ 𝑏𝛼−1 1 − 𝑏 𝛽−1

(worked out on the board)
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Beta Distribution

20source:  Wikipedia



Simple MAP Inference

• A biased coin is described by a single parameter 𝑏 which 
corresponds to the probability of seeing heads

• Given the set of samples 𝐻,𝐻,𝐻,𝐻, 𝑇 use MAP inference to 
estimate 𝑏

• What prior distribution should we pick for 𝑝 𝑏 ?

• MAP inference with a uniform prior is equivalent to maximum 
likelihood estimation

– Prior can be viewed as a certain kind of regularization:  it 
preferences parameters that occur with high probability 
under the prior
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