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Lecture 12

Maximum Likelihood Learning



Maximum Likelihood Estimation

• Given samples 𝑥1, … , 𝑥𝑀 from some unknown distribution 
with parameters 𝜃…

– The log-likelihood of the evidence is defined to be 

log 𝑙 𝜃 =෍

𝑚

log 𝑝(𝑥|𝜃)

– Goal:  maximize the log-likelihood
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MLE for Bayesian Networks

• Given samples 𝑥1, … , 𝑥𝑀 from some unknown Bayesian 
network that factors over the directed acyclic graph 𝐺

– The parameters of a Bayesian model are simply the 
conditional probabilities that define the factorization

– For each 𝑖 ∈ 𝐺 we need to learn 𝑝(𝑥𝑖|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑖 ), create a 

variable 𝜃𝑥𝑖|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑖)

log 𝑙 𝜃 =෍

𝑚

෍

𝑖∈𝑉

log 𝜃𝑥𝑖
𝑚|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑖)

𝑚

3



MLE for Bayesian Networks

log 𝑙 𝜃 =෍

𝑚

෍

𝑖∈𝑉

log 𝜃𝑥𝑖
𝑚|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑖)

𝑚

=෍

𝑖∈𝑉

෍

𝑚

log 𝜃𝑥𝑖
𝑚|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑖)

𝑚

=෍

𝑖∈𝑉

෍

𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑖

෍

𝑥𝑖

N𝑥i,𝑥parents(i)log 𝜃𝑥𝑖|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑖
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MLE for Bayesian Networks

log 𝑙 𝜃 =෍

𝑚

෍

𝑖∈𝑉

log 𝜃𝑥𝑖
𝑚|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑖)

𝑚

=෍

𝑖∈𝑉

෍

𝑚

log 𝜃𝑥𝑖
𝑚|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑖)

𝑚

=෍

𝑖∈𝑉

෍

𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑖

෍

𝑥𝑖

N𝑥i,𝑥parents(i)log 𝜃𝑥𝑖|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑖
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𝑁𝑥𝑖,𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑖
is the number of times 

(𝑥𝑖 , 𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑖 ) was observed in the samples



MLE for Bayesian Networks

log 𝑙 𝜃 =෍

𝑚

෍

𝑖∈𝑉

log 𝜃𝑥𝑖
𝑚|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑖)

𝑚

=෍

𝑖∈𝑉

෍

𝑚

log 𝜃𝑥𝑖
𝑚|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑖)

𝑚

=෍

𝑖∈𝑉

෍

𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑖

෍

𝑥𝑖

N𝑥i,𝑥parents(i)log 𝜃𝑥𝑖|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑖

Fix 𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑖 solve for 𝜃𝑥𝑖|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑖
for all 𝑥𝑖

(on the board)
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MLE for Bayesian Networks

𝜃𝑥𝑖|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑖
=

N𝑥𝑖,𝑥parents 𝑖

σ
𝑥𝑖
′N𝑥𝑖

′,𝑥parents 𝑖

=
N𝑥𝑖,𝑥parents 𝑖

N𝑥parents 𝑖

• This is just the empirical conditional probability distribution

– Worked out nicely because of the factorization of the joint 
distribution

• Similar to the coin flips result from last time
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