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Lecture 13

More Maximum Likelihood



Recap

• Last time:  Introduction to maximum likelihood estimation

– MLE for Bayesian networks

• Optimal CPTs correspond to empirical counts

• Today:  MLE for CRFs
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Maximum Likelihood Estimation

• Given samples 𝑥1, … , 𝑥𝑀 from some unknown distribution 
with parameters 𝜃…

– The log-likelihood of the evidence is defined to be 

log 𝑙 𝜃 =෍

𝑚

log 𝑝(𝑥𝑚|𝜃)

– Goal:  maximize the log-likelihood
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MLE for MRFs

• Let’s compute the MLE for MRFs that factor over the graph 𝐺

as 𝑝 𝑥|𝜃 =
1

𝑍(𝜃)
ς𝐶𝜓𝐶 𝑥𝐶|𝜃

• The parameters 𝜃 control the allowable potential functions

• Again, suppose we have samples 𝑥1, … , 𝑥𝑀 from some 
unknown MRF of this form

log 𝑙 𝜃 = ෍

𝑚

෍

𝐶

log𝜓𝐶 𝑥𝐶
𝑚 𝜃 −𝑀 log 𝑍 (𝜃)
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𝑍(𝜃) couples all of the potential functions together!

Even computing 𝑍(𝜃) by itself was a challenging task…



Conditional Random Fields

• Learning MRFs is quite restrictive

– Most “real” problems are really conditional models

• Example:  image segmentation

– Represent a segmentation problem as a MRF over a two 
dimensional grid

– Each 𝑥𝑖 is an binary variable indicating whether or not the pixel 
is in the foreground or the background

– How do we incorporate pixel information?

• The potentials over the edge (𝑖, 𝑗) of the MRF should 
depend on 𝑥𝑖 , 𝑥𝑗 as well as the pixel information at nodes 𝑖

and 𝑗
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Image Segmentation



Feature Vectors

• The pixel information is called a feature of the model

– Features will consist of more than just a scalar value (i.e., pixels, 
at the very least, are vectors of RGBA values)

• Vector of features 𝑦 (e.g., one vector of features 𝑦𝑖 for each 𝑖 ∈ 𝑉)

– We think of the joint probability distribution as a conditional 
distribution 𝑝(𝑥|𝑦, 𝜃)

• This makes MLE even harder

– Samples are pairs (𝑥1, 𝑦1), … , (𝑥𝑀, 𝑦𝑀)

– The feature vectors can be different for each sample: need to 
compute 𝑍(𝜃, 𝑦𝑚) in the log-likelihood!
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Log-Linear Models

• MLE seems daunting for MRFs and CRFs

– Need a nice way to parameterize the model and to deal 
with features

• We often assume that the models are log-linear in the 
parameters

– Many of the models that we have seen so far can easily be 
expressed as log-linear models of the parameters

– Feature vectors should also be incorporated in a log-linear 
way
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Log-Linear Models

• The potential on the clique 𝐶 should be a log-linear function 
of the parameters

𝜓𝐶 𝑥𝐶|𝑦, 𝜃 = exp 𝜃, 𝑓𝐶 𝑥𝐶 , 𝑦

where

𝜃, 𝑓𝐶 𝑥𝐶 , 𝑦 =෍

𝑘

𝜃𝑘 ⋅ 𝑓𝐶 𝑥𝐶 , 𝑦 𝑘

• Here, 𝑓 is a feature map that takes the input variables and 
returns a vector the same size as 𝜃
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Log-Linear MRFs

• Over complete representation:  one parameter for each clique 
𝐶 and choice of 𝑥𝐶

𝑝 𝑥|𝜃 =
1

𝑍
ෑ

𝐶

exp(𝜃𝐶(𝑥𝐶))

– 𝑓𝐶 𝑥𝐶 is a 0-1 vector that is indexed by 𝐶 and 𝑥𝐶whose only 
non-zero component corresponds to 𝜃𝐶(𝑥𝐶)

• One parameter per clique

𝑝 𝑥|𝜃 =
1

𝑍
ෑ

𝐶

exp( 𝜃, 𝑓𝐶(𝑥𝐶) )

– 𝑓𝐶 𝑥𝐶 is a vector that is indexed ONLY by 𝐶 whose only non-
zero component corresponds to 𝜃𝐶
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MLE for Log-Linear Models

𝑝 𝑥 𝑦, 𝜃 =
1

𝑍 𝜃, 𝑦
ෑ

𝐶

exp 𝜃, 𝑓𝐶 𝑥𝐶 , 𝑦

log 𝑙 𝜃 =෍

𝑚

෍

𝐶

𝜃, 𝑓𝐶 𝑥𝐶
𝑚, 𝑦𝑚 − log 𝑍(𝜃, 𝑦𝑚)

= 𝜃,෍

𝑚

෍

𝐶

𝑓𝐶 𝑥𝐶
𝑚, 𝑦𝑚 −෍

𝑚

log 𝑍(𝜃, 𝑦𝑚)
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MLE for Log-Linear Models

𝑝 𝑥 𝑦, 𝜃 =
1

𝑍 𝜃, 𝑦
ෑ

𝐶

exp 𝜃, 𝑓𝐶 𝑥𝐶 , 𝑦

log 𝑙 𝜃 =෍

𝑚

෍

𝐶

𝜃, 𝑓𝐶 𝑥𝐶
𝑚, 𝑦𝑚 − log 𝑍(𝜃, 𝑦𝑚)

= 𝜃,෍

𝑚

෍

𝐶

𝑓𝐶 𝑥𝐶
𝑚, 𝑦𝑚 −෍

𝑚

log 𝑍(𝜃, 𝑦𝑚)
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Linear in 𝜃 Depends non-linearly 
on 𝜃



Concavity of MLE

We will show that log 𝑍(𝜃, 𝑦) is a convex function of 𝜃…

Fix a distribution 𝑞(x|y)

𝐷(𝑞| 𝑝 =෍

𝑥

𝑞 𝑥|𝑦 log
𝑞 𝑥|𝑦

𝑝 𝑥|𝑦, 𝜃

=෍

𝑥

𝑞 𝑥|𝑦 log 𝑞(𝑥|𝑦) −෍

𝑥

𝑞 𝑥|𝑦 log 𝑝 𝑥|𝑦, 𝜃

= −𝐻(𝑞) −෍

𝑥

𝑞 𝑥|𝑦 log 𝑝 𝑥|𝑦, 𝜃

= −𝐻(𝑞) + log𝑍(𝜃, 𝑦) −෍

𝑥

෍

𝐶

𝑞 𝑥|𝑦 𝜃, 𝑓𝐶 𝑥𝐶 , 𝑦

= −𝐻(𝑞) + log𝑍(𝜃, 𝑦) −෍

𝐶

෍

𝑥𝐶

𝑞𝐶 𝑥𝐶|𝑦 𝜃, 𝑓𝐶 𝑥𝐶 , 𝑦
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Concavity of MLE

log 𝑍(𝜃, 𝑦) = max
𝑞

𝐻(𝑞) +෍

𝐶

෍

𝑥𝐶

𝑞𝐶 𝑥𝐶|𝑦 𝜃, 𝑓𝐶 𝑥𝐶 , 𝑦

• If a function 𝑔(𝑥, 𝑦) is convex in 𝑥 for each 𝑦, then 
max
𝑦

𝑔(𝑥, 𝑦) is convex in 𝑥

– As a result, log 𝑍(𝜃, 𝑦) is a convex function of 𝜃 for a fixed 
value of 𝑦
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Linear in 𝜃



MLE for Log-Linear Models

𝑝 𝑥 𝑦, 𝜃 =
1

𝑍 𝜃, 𝑦
ෑ

𝐶

exp 𝜃, 𝑓𝐶 𝑥𝐶 , 𝑦

log 𝑙 𝜃 =෍

𝑚

෍

𝐶

𝜃, 𝑓𝐶 𝑥𝐶
𝑚, 𝑦𝑚 − log 𝑍(𝜃, 𝑦𝑚)

= 𝜃,෍

𝑚

෍

𝐶

𝑓𝐶 𝑥𝐶
𝑚, 𝑦𝑚 −෍

𝑚

log 𝑍(𝜃, 𝑦𝑚)
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Linear in 𝜃 Convex in 𝜃



MLE for Log-Linear Models

𝑝 𝑥 𝑦, 𝜃 =
1

𝑍 𝜃, 𝑦
ෑ

𝐶

exp 𝜃, 𝑓𝐶 𝑥𝐶 , 𝑦

log 𝑙 𝜃 =෍

𝑚

෍

𝐶

𝜃, 𝑓𝐶 𝑥𝐶
𝑚, 𝑦𝑚 − log 𝑍(𝜃, 𝑦𝑚)

= 𝜃,෍

𝑚

෍

𝐶

𝑓𝐶 𝑥𝐶
𝑚, 𝑦𝑚 −෍

𝑚

log 𝑍(𝜃, 𝑦𝑚)
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Concave in 𝜃

Could optimize it using gradient ascent!
(need to compute 𝛻𝜃log 𝑍(𝜃, 𝑦))



MLE via Gradient Ascent

• What is the gradient of the log-likelihood with respect to 𝜃?

𝛻𝜃 log 𝑍(𝜃, 𝑦
𝑚) = ?

(worked out on board)
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MLE via Gradient Ascent

• What is the gradient of the log-likelihood with respect to 𝜃?

𝛻𝜃 log 𝑍(𝜃, 𝑦
𝑚) =෍

𝐶

෍

𝑚

෍

𝑥𝐶

𝑝𝐶 𝑥𝐶|𝑦
𝑚, 𝜃 𝑓𝐶 𝑥𝐶 , 𝑦

𝑚

This is the expected value of the feature maps under the joint 
distribution
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MLE via Gradient Ascent

• What is the gradient of the log-likelihood with respect to 𝜃?

𝛻𝜃 log 𝑙(𝜃) =෍

𝐶

෍

𝑚

𝑓𝐶 𝑥𝐶
𝑚, 𝑦𝑚 −෍

𝑥𝐶

𝑝𝐶 𝑥𝐶|𝑦
𝑚, 𝜃 𝑓𝐶 𝑥𝐶 , 𝑦

𝑚

– To compute/approximate this quantity, we only need to 
compute/approximate the marginal distributions 𝑝𝐶(𝑥𝐶|𝑦, 𝜃)

– This requires performing marginal inference on a different 
model at each step of gradient ascent!
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Moment Matching

• Let 𝑓 𝑥𝑚, 𝑦𝑚 = σ𝐶 𝑓𝐶 𝑥𝐶
𝑚, 𝑦𝑚

• Setting the gradient with respect to 𝜃 equal to zero and 
solving gives

෍

𝑚

𝑓(𝑥𝑚, 𝑦𝑚) =෍

𝑚

෍

𝑥

𝑝 𝑥|𝑦𝑚, 𝜃 𝑓 𝑥, 𝑦𝑚

• This condition is called moment matching and when the 
model is an MRF instead of a CRF this reduces to

1

𝑀
෍

𝑚

𝑓(𝑥𝑚) =෍

𝑥

𝑝 𝑥|𝜃 𝑓 𝑥
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Moment Matching

• As an example, consider a log-linear MRF

𝑝 𝑥 =
1

𝑍
ෑ

𝐶

exp(𝜃𝐶(𝑥𝐶))

• That is, 𝑓𝐶 𝑥𝐶 is a vector that is indexed by 𝐶 and 𝑥𝐶whose 
only non-zero component corresponds to 𝜃𝐶(𝑥𝐶)

• The moment matching condition becomes

1

𝑀
෍

𝑚

1𝑥𝐶=𝑥𝐶
𝑚 = 𝑝𝐶 𝑥𝐶 𝜃 , for all 𝐶, 𝑥𝐶
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Regularization in MLE

• Recall that we can also incorporate prior information about 
the parameters into the MLE problem

– This involved solving an augmented MLE

ෑ

𝑚

𝑝 𝑥𝑚 𝜃 𝑝(𝜃)

– What types of priors should we choose for the 
parameters?
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Regularization in MLE

• Recall that we can also incorporate prior information about 
the parameters into the MLE problem

– This involved solving an augmented MLE

ෑ

𝑚

𝑝 𝑥𝑚 𝜃 𝑝(𝜃)

– What types of priors should we choose for the 
parameters?

• Gaussian prior: 𝑝 𝜃 ∝ exp(−
1

2
(𝜃 − 𝜇)𝑇Σ−1(𝜃 − 𝜇)𝑇)

• Uniform over [0,1]
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Regularization in MLE

• Recall that we can also incorporate prior information about 
the parameters into the MLE problem

– This involved solving an augmented MLE

ෑ

𝑚

𝑝 𝑥𝑚 𝜃 exp(−
1

2
𝜃𝑇𝐷𝜃𝑇)

– What types of priors should we choose for the 
parameters?

• Gaussian prior: 𝑝 𝜃 ∝ exp(−
1

2
(𝜃 − 𝜇)𝑇Σ−1(𝜃 − 𝜇)𝑇)

• Uniform over [0,1]
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Gaussian prior with a 
diagonal covariance 
matrix all of whose 
entries are equal to 𝜆



Regularization in MLE

• Using the previous Gaussian prior yields the following log-
optimization problem

logෑ

𝑚

𝑝 𝑥𝑚 𝜃 exp(−
1

2
𝜃𝑇𝐷𝜃𝑇) = ෍

𝑚

log 𝑝(𝑥𝑚|𝜃) −
𝜆

2
෍

𝑘

𝜃𝑘
2

= ෍

𝑚

log 𝑝(𝑥𝑚|𝜃) −
𝜆

2
|𝜃| 2

2
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Regularization in MLE

• Using the previous Gaussian prior yields the following log-
optimization problem

logෑ

𝑚

𝑝 𝑥𝑚 𝜃 exp(−
1

2
𝜃𝑇𝐷𝜃𝑇) = ෍

𝑚

log 𝑝(𝑥𝑚|𝜃) −
𝜆

2
෍

𝑘

𝜃𝑘
2

= ෍

𝑚

log 𝑝(𝑥𝑚|𝜃) −
𝜆

2
|𝜃| 2

2
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Known as ℓ2 regularization



Regularization

28

ℓ1 ℓ2



Duality and MLE

log 𝑍(𝜃, 𝑦) = max
𝑞

𝐻(𝑞) +෍

𝐶

෍

𝑥𝐶

𝑞𝐶 𝑥𝐶|𝑦 𝜃, 𝑓𝐶 𝑥𝐶 , 𝑦

log 𝑙 𝜃 = 𝜃,෍

𝑚

෍

𝐶

𝑓𝐶 𝑥𝐶
𝑚, 𝑦𝑚 −෍

𝑚

log 𝑍(𝜃, 𝑦𝑚)

Plugging the first into the second gives:

log 𝑙 𝜃 = 𝜃,෍

𝑚

෍

𝐶

𝑓𝐶 𝑥𝐶
𝑚 , 𝑦𝑚 −෍

𝑚

max
𝑞𝑚

𝐻(𝑞𝑚) +෍

𝐶

෍

𝑥𝐶

𝑞𝐶
𝑚 𝑥𝐶|𝑦

𝑚 𝜃, 𝑓𝐶 𝑥𝐶 , 𝑦
𝑚

29



Duality and MLE

max
𝜃

log 𝑙 𝜃 = max
𝜃

min
𝑞1,…,𝑞𝑀

𝜃,෍

𝐶

෍

𝑚

𝑓𝐶 𝑥𝐶
𝑚 , 𝑦𝑚 −෍

𝑥𝐶

𝑞𝐶
𝑚 𝑥𝐶|𝑦

𝑚 𝑓𝐶 𝑥𝐶 , 𝑦
𝑚 −෍

𝑚

𝐻(𝑞𝑚)

• This is called a minimax or saddle-point problem

• Recall that we ended up with similar looking optimization 
problems when we constructed the Lagrange dual function

• When can we switch the order of the max and min?

– The function is linear in theta, so there is an advantage to 
swapping the order
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Saddle Point

31Source: Wikipedia



Sion’s Minimax Theorem

Let X be a compact convex subset of 𝑅𝑛 and 𝑌 be a convex subset 
of 𝑅𝑚

Let f be a real-valued function on 𝑋 × 𝑌 such that 

– 𝑓(𝑥,⋅) a continuous concave function over 𝑌 for each 𝑥 ∈ 𝑋

– 𝑓(⋅, 𝑦) a continuous convex function over 𝑋 for each 𝑦 ∈ 𝑌

then

sup
𝑦
min
𝑥

𝑓(𝑥, 𝑦) = min
𝑥

sup
𝑦
𝑓 𝑥, 𝑦
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Duality and MLE

max
𝜃

min
𝑞1,…,𝑞𝑀

𝜃,෍

𝐶

෍

𝑚

𝑓𝐶 𝑥𝐶
𝑚, 𝑦𝑚 −෍

𝑥𝐶

𝑞𝐶
𝑚 𝑥𝐶|𝑦

𝑚 𝑓𝐶 𝑥𝐶 , 𝑦
𝑚 −෍

𝑚

𝐻(𝑞𝑚)

is equal to

min
𝑞1,…,𝑞𝑀

max
𝜃

𝜃,෍

𝐶

෍

𝑚

𝑓𝐶 𝑥𝐶
𝑚 , 𝑦𝑚 −෍

𝑥𝐶

𝑞𝐶
𝑚 𝑥𝐶|𝑦

𝑚 𝑓𝐶 𝑥𝐶 , 𝑦
𝑚 −෍

𝑚

𝐻(𝑞𝑚)

Solve for 𝜃?
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Maximum Entropy

max
𝑞1,…,𝑞𝑀

෍

𝑚

𝐻(𝑞𝑚)

such that the moment matching condition is satisfied

෍

𝑚

𝑓(𝑥𝑚, 𝑦𝑚) =෍

𝑚

෍

𝑥

𝑞𝑚 𝑥|𝑦𝑚 𝑓 𝑥, 𝑦𝑚

and 𝑞1, … , 𝑞𝑚 are discrete probability distributions

• Instead of maximizing the log-likelihood, we could maximize 
the entropy over all approximating distributions that satisfy 
the moment matching condition
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MLE in Practice

• We can compute the partition function in linear time over trees using 
belief propagation

– We can use this to learn the parameters of tree-structured models

• What if the graph isn’t a tree?

– Use variable elimination to compute the partition function (exact but 
slow)

– Use importance sampling to approximate the partition function (can 
also be quite slow; maybe only use a few samples?)

– Use loopy belief propagation to approximate the partition function 
(can be bad if loopy BP doesn’t converge quickly)
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MLE in Practice

• Practical wisdom:

– If you are trying to perform some prediction task (i.e., MAP 
inference to do prediction), then it is better to learn the “wrong 
model”

– Learning and prediction should use the same approximations

• What people actually do:

– Use a few iterations of loopy BP or sampling to approximate the 
marginals

– Approximate marginals give approximate gradients (recall that 
the gradient only depended on the marginals)

– Perform approximate gradient descent and hope it works
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MLE in Practice

• Other options

– Replace the true entropy with the Bethe entropy and solve 
the approximate dual problem

– Use fancier optimization techniques to solve the problem 
faster

• e.g., the method of conditional gradients
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