CS 6347

Lecture 13

More Maximum Likelihood



Recap
I

e Last time: Introduction to maximum likelihood estimation
— MLE for Bayesian networks
* Optimal CPTs correspond to empirical counts

 Today: MLE for CRFs




Maximum Likelihood Estimation

* Given samples x1, ..., x™ from some unknown distribution
with parameters 6...

— The log-likelihood of the evidence is defined to be
logl(0) = Z logp(x™|0)
m

— Goal: maximize the log-likelihood




MLE for MRFs
[

e Let’s compute the MLE for MRFs that factor over the graph G
1

as p(x|0) = 2(0) [Ic e (xcl6)
 The parameters 6 control the allowable potential functions

* Again, suppose we have samples x1, ..., x™ from some
unknown MRF of this form

log1(6) = [zz log t/)c(x’c'”lé?)] — MlogZ (0)
m C




MLE for MRFs
K

e Let’s compute the MLE for MRFs that factor over the graph G
1

as p(x|0) = 2(0) [Ic e (xcl6)
 The parameters 6 control the allowable potential functions

* Again, suppose we have samples x1, ..., x™ from some
unknown MRF of this form

log 1(8) = [ZZ log rpc(x’c“w)] —
m C

Z(0) couples all of the potential functions together!

Even computing Z(0) by itself was a challenging task...
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Conditional Random Fields
_

* Learning MRFs is quite restrictive
— Most “real” problems are really conditional models
* Example: image segmentation

— Represent a segmentation problem as a MRF over a two
dimensional grid

— Each x; is an binary variable indicating whether or not the pixel
is in the foreground or the background

— How do we incorporate pixel information?

* The potentials over the edge (i, j) of the MRF should
depend on x;, x; as well as the pixel information at nodes i

and j
e




Image Segmentation




Feature Vectors
_

* The pixel information is called a feature of the model

— Features will consist of more than just a scalar value (i.e., pixels,
at the very least, are vectors of RGBA values)

* Vector of features y (e.g., one vector of features y; foreachi € 1)

— We think of the joint probability distribution as a conditional
distribution p(x|y, 0)

* This makes MLE even harder
— Samples are pairs (x1, y1), ..., (M, yM)

— The feature vectors can be different for each sample: need to
compute Z(6,y™) in the log-likelihood!
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Log-Linear Models
-

 MLE seems daunting for MRFs and CRFs

— Need a nice way to parameterize the model and to deal
with features

* We often assume that the models are log-linear in the
parameters

— Many of the models that we have seen so far can easily be
expressed as log-linear models of the parameters

— Feature vectors should also be incorporated in a log-linear
way




Log-Linear Models

* The potential on the clique C should be a log-linear function
of the parameters

Yelxcly, 0) = exp((0, fc(xc, ¥)))
where

(91fC(xCry)> — Zek °fC(xC'y)k
k

* Here, f is a feature map that takes the input variables and
returns a vector the same size as 0
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Log-Linear MRFs

* Over complete representation: one parameter for each clique
C and choice of x.

1
px16) = | [exp@cxe)

C

— fc(x¢) is a 0-1 vector that is indexed by C and x-whose only
non-zero component corresponds to 6. (x¢)

 One parameter per clique

1
p16) = | [exp((6, fexo)

C

— fc(xc) is a vector that is indexed ONLY by C whose only non-
zero component corresponds to 6,
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MLE for Log-Linear Models

1
p(xly,0) = 7o 1:[ exp(6), fe (e, )
log 1(6) =Z [Z(H,fc(x’c”,ymb —logZ(6,y™)
m |L C

= <QZ z fC(x’C’”',ym)> — Z logZ(6,y™)
m C m
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MLE for Log-Linear Models

[ —
p(x1y,0) = 55— [ Jexptto,seceerm
log1(0) = Z -[Zw,fc(x’c",ym)) —logZ(6,y™)
|5 |
- <9, DD el ym)> - > 10g2(6,y™)
_m ¢ ) )

on @
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Concavity of MLE

We will show that log Z(0, y) is a convex function of 6...

Fix a distribution g (x|y)

D(qllp) = z q(x|y)log pc(lifyl,y;)
= Z q(x|y) log q(x|y) — z q(x|y)logp(x|y, 6)
= —H(q) — z q(x|y) logp(x|y,0)
= —H(q) +logZ(6,y) — z z q(x|y)8, fe e, y))
X C

= —H(q) +logZ(6,y) — Z z qc(xcly)o, fe (e, v))
C xc
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Concavity of MLE

logZ(0,y) = max
q

H(q) + 2 Z qc(xc|y)(0, fc(xc, ¥))
C Xxc

\ J
Y

Linearin @

* If afunction g(x,y) is convex in x for each y, then
max g(x,y) is convexin x
y

— As aresult, log Z(8, y) is a convex function of 8 for a fixed
value of y
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MLE for Log-Linear Models

1
p(xly,0) = 7o 1:[ exp(6), fe (e, )
log 1(6) =Z [Z(H,fc(x’c”,ymb —logZ(6,y™)
m |L C

= <QZ z fc(x’c’”',ym)> — z logZ(6,y™)
m C m

Linearin @ Convex in 6
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MLE for Log-Linear Models

[ ——
p(xly,0) = 55— [ Jexptto,seceerm
log1(0) = Z -[Zw,fc(x’c",ym)) —logZ(6,y™)
m LT _
— <g, Z Z fo(x, y’")> — z logZ(6,y™)
. m ¢ m J

Concavein @

Could optimize it using gradient ascent!
(need to compute VylogZ(6,y))
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MLE via Gradient Ascent

 What is the gradient of the log-likelihood with respect to 87
VglogZ(0,y™) =7

(worked out on board)
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MLE via Gradient Ascent

 What is the gradient of the log-likelihood with respect to 87

79108 Z(6,y™) = Z D) pelrcly™ 0)fe (e, y™

m Xc

This is the expected value of the feature maps under the joint
distribution
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MLE via Gradient Ascent

 What is the gradient of the log-likelihood with respect to 6?

7plogl(6) = ) > (fc G y™ = ) peleely™ O)fe e ym>>
C m Xc

— To compute/approximate this quantity, we only need to
compute/approximate the marginal distributions p-(x.|y, 8)

— This requires performing marginal inference on a different
model at each step of gradient ascent!
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Moment Matching

Let f(x™,y™) = Xc fe(xchy™)

Setting the gradient with respect to 6 equal to zero and
solving gives

D PG Y™ = ) ) pGely™, 0)fCoy™

This condition is called moment matching and when the
model is an MRF instead of a CRF this reduces to

N Fam =Y plo)e
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Moment Matching

 As an example, consider a log-linear MRF
1
p() =~ | |exp(0c(xe)
C

* Thatis, f-(x.) is a vector that is indexed by C and x-whose
only non-zero component corresponds to 8.(x.)

* The moment matching condition becomes

1
MZ 1y —xm = pc(xc|0), for all C, x,
m
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Regularization in MLE
D —

* Recall that we can also incorporate prior information about
the parameters into the MLE problem

— This involved solving an augmented MLE
[ [pemiow )
m

— What types of priors should we choose for the
parameters?
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Regularization in MLE

* Recall that we can also incorporate prior information about
the parameters into the MLE problem

— This involved solving an augmented MLE
[ [pemiow )
m

— What types of priors should we choose for the
parameters?

* Gaussian prior: p(8) « exp(—%(Q -zt -wh

* Uniform over [0,1]
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Regularization in MLE

* Recall that we can also incorporate prior information about
the parameters into the MLE problem

— This involved solving an augmented MLE

matrix all of whose
entries are equal to 4

— What types of priors should we choose for the
parameters?

1 G : : :
‘ ‘ T T aussian prior with a
p(xmle) exp(— i 6" Do ) diagonal covariance
m

* Gaussian prior: p(8) « exp(—%(Q -zt -wh

* Uniform over [0,1]
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Regularization in MLE

* Using the previous Gaussian prior yields the following log-
optimization problem

) _ _
logl_[p(xmle) exp(—EHTDHT)= zlogp(xm|9) —— ) 67
m L m i

_ m - A 2
= | togpxmio)| -5 16113
L m J
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Regularization in MLE

* Using the previous Gaussian prior yields the following log-
optimization problem

) _ _
logl_[p(xmle) exp(—EHTDHT)= zlogp(xm|9) -5 67
m L m i

_ m - A 2
= | togpxmio)| -5 16113
L m J

Known as ¥, regularization
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Duality and MLE

logZ(0,y) = max
q

H@)+ Y Y acCeely)o, fotee y»]
C xc

log L(9) = <e, o fc(xz”,ym)> - > 10gZ(6,y™
m C m

Plugging the first into the second gives:

logl(8) = <9, Z Z fe(xch, y"‘)> - z max
m C m

H@™+) ) qzn(xc|ym><e,fccxc,ym>>]
C xc
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Duality and MLE

m

maxlogL(6) = max min, [<9 Z > <fc (e y™) - Z ag Cecly™f (xc,ym)>> - ; H(q™)

This is called a minimax or saddle-point problem

Recall that we ended up with similar looking optimization
problems when we constructed the Lagrange dual function

e When can we switch the order of the max and min?

— The function is linear in theta, so there is an advantage to
swapping the order
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Saddle Point

Source: Wikipedia 31



Sion’s Minimax Theorem
e

Let X be a compact convex subset of R™ and Y be a convex subset
of R™

Let f be a real-valued function on X X Y such that
— f(x,") a continuous concave function over Y foreach x € X

— f(,¥) a continuous convex function over X foreachy € Y

then

sup min f (x,y) = minsup f(x,y)
y X X oy
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Duality and MLE

meélqulf}_ilgM [<9»Z ; (fc(xgn»ym) - Z qgl(xcwm)fc(xc»ym))) - ; H(q™)

xc

is equal to

. gigM max [<9, Z ; (fc (xchy™) — Z qct (xcly™) fe (xc, ym))> - ; H(q™)

xc

Solve for 67
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Maximum Entropy

m
max, > Hg™
m

such that the moment matching condition is satisfied

D FEmY™ = ) Y q Y™™

and ql, ...,q"™ are discrete probability distributions

* Instead of maximizing the log-likelihood, we could maximize
the entropy over all approximating distributions that satisfy
the moment matching condition

UT D
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MLE in Practice
[

* We can compute the partition function in linear time over trees using
belief propagation

— We can use this to learn the parameters of tree-structured models
* What if the graph isn’t a tree?

— Use variable elimination to compute the partition function (exact but
slow)

— Use importance sampling to approximate the partition function (can
also be quite slow; maybe only use a few samples?)

— Use loopy belief propagation to approximate the partition function
(can be bad if loopy BP doesn’t converge quickly)
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MLE in Practice
_

* Practical wisdom:

— If you are trying to perform some prediction task (i.e., MAP
inference to do prediction), then it is better to learn the “wrong

model”

— Learning and prediction should use the same approximations

 What people actually do:

— Use a few iterations of loopy BP or sampling to approximate the
marginals

— Approximate marginals give approximate gradients (recall that
the gradient only depended on the marginals)

— Perform approximate gradient descent and hope it works
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MLE in Practice

* Other options

— Replace the true entropy with the Bethe entropy and solve
the approximate dual problem

— Use fancier optimization techniques to solve the problem
faster

* e.g., the method of conditional gradients
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