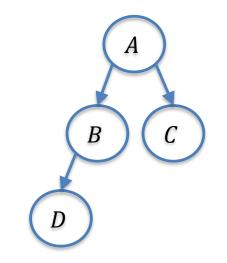
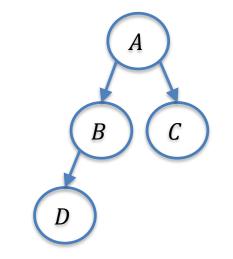


CS 6347


Lecture 17

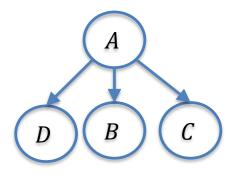
Introduction to Structure Learning

- We have been focusing on parameter learning:
 - E.g., given a graph structure, find the parameters that maximize the log-likelihood
- In practice, the structure of the graph may not be known and may need to be learned from the data
 - For Bayesian networks, we may be only given samples and asked to make predictions

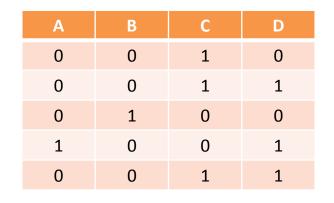

 Recall that for a fixed Bayesian network with fully observed data, the MLE of the conditional probability tables was given by the empirical probabilities

Α	В	С	D
0	0	1	0
0	0	1	1
0	1	0	0
1	0	0	1
0	0	1	1

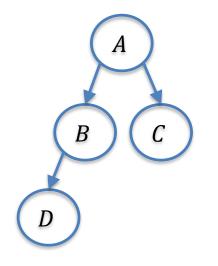
 Recall that for a fixed Bayesian network with fully observed data, the MLE of the conditional probability tables was given by the empirical probabilities

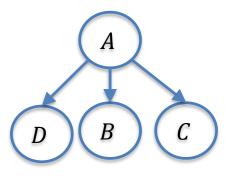


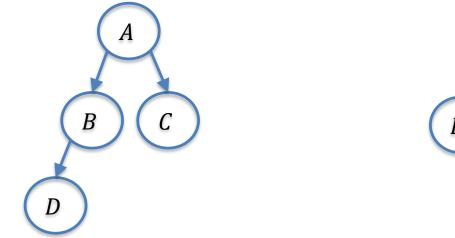
Α	В	С	D
0	0	1	0
0	0	1	1
0	1	0	0
1	0	0	1
0	0	1	1

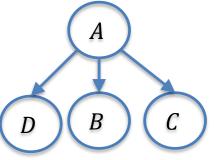

				Α	В	P(B A)
	Α	P	(A)	0	0	3/4
	0	4	/5	0	1	1/4
	1	1	./5	1	0	1
				1	1	0
E	3	D	P(D B)	Α	С	P(C A)
()	0	1/1	0	0	1/1
	-	0	1/4	0	0	1/4
(-)	1	1/4 3/4	0	1	3/4
	-	-				

 Recall that for a fixed Bayesian network with fully observed data, the MLE of the conditional probability tables was given by the empirical probabilities

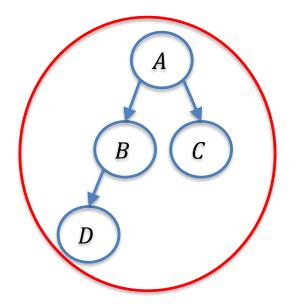


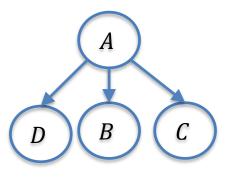

			Α	В	P(B A)
Α		P(A)	0	0	3/4
0		4/5	0	1	1/4
1		1/5	1	0	1
			1	1	0
Α	D	P(D A)) A	C	P(C A)
0	0	1/2	0	0	1/4
0	1	1/2	0	1	3/4
1	0	0	1	0	1
1	1	1	1	1	0


• Which model should be preferred?



• Which model should be preferred?





Which one has the highest log-likelihood given the data?

• Which model should be preferred?

Which one has the highest log-likelihood given the data?

- Determining the structure that maximizes the log-likelihood is not too difficult
 - A complete DAG always maximizes the log-likelihood
 - This almost certainly results in overfitting
- Alternative is to attempt to learn simple structures
 - Approach 1: Optimize the log-likelihood over simple graphs
 - Approach 2: Add a penalty term to the log-likelihood

Adding Edges Increases the MLE

Let p' be the empirical probability distribution

$$\frac{\ell_2 - \ell_1}{M} = \frac{1}{M} \sum_m \log \frac{p'(x_D^m | x_B^m, x_C^m)}{p'(x_D^m | x_B^m)}$$
$$= \sum_x p'(x_B, x_C, x_D) \log \frac{p'(x_D | x_B, x_C)}{p'(x_D | x_B)}$$
$$= \sum_x p'(x_B, x_C, x_D) \log \frac{p'(x_B, x_C, x_D)}{p'(x_C | x_B)p'(x_D | x_B)p'(x_B)}$$
$$= d(p'(x_B, x_C, x_D) ||p'(x_C | x_B)p'(x_D | x_B)p'(x_B)) \ge 0$$

- Suppose that we want to find the best tree-structured BN that represents a given joint probability distribution
 - Find the tree-structured BN that maximizes the likelihood
- Let's consider the log-likelihood of a fixed tree T
 - Assume that the edges are directed so that each node has exactly one parent

For a fixed tree:

$$\max_{\theta} \log l(\theta, T) = \sum_{i \in V(T)} \sum_{x_{\text{parent}(i)}} \sum_{x_i} N_{x_i, x_{\text{parent}(i)}} \log \frac{N_{x_i, x_{\text{parent}(i)}}}{N_{x_{\text{parent}(i)}}}$$

$$= \sum_{i \in V(T)} \left[\sum_{x_i} N_{x_i} \log N_{x_i} + \sum_{x_{\text{parent}(i)}} \sum_{x_i} N_{x_i, x_{\text{parent}(i)}} \log \frac{N_{x_i, x_{\text{parent}(i)}}}{N_{x_i} N_{x_{\text{parent}(i)}}} \right]$$
$$= \left[\sum_{i \in V} \sum_{x_i} N_{x_i} \log N_{x_i} \right] + \left[\sum_{(i,j) \in E(T)} \sum_{x_i, x_j} N_{x_i, x_j} \log \frac{N_{x_i, x_j}}{N_{x_i} N_{x_j}} \right]$$

For a fixed tree:

$$\max_{\theta} \log l(\theta, T) = \sum_{i \in V(T)} \sum_{x_{\text{parent}(i)}} \sum_{x_i} N_{x_i, x_{\text{parent}(i)}} \log \frac{N_{x_i, x_{\text{parent}(i)}}}{N_{x_{\text{parent}(i)}}}$$
$$= \sum_{i \in V(T)} \left[\sum_{x_i} N_{x_i} \log N_{x_i} + \sum_{x_{\text{parent}(i)}} \sum_{x_i} N_{x_i, x_{\text{parent}(i)}} \log \frac{N_{x_i, x_{\text{parent}(i)}}}{N_{x_i} N_{x_{\text{parent}(i)}}} \right]$$
$$= \left[\sum_{i \in V} \sum_{x_i} N_{x_i} \log N_{x_i} \right] + \left[\sum_{i, j \in E(T)} \sum_{x_i, x_j} N_{x_i, x_j} \log \frac{N_{x_i, x_j}}{N_{x_i} N_{x_j}} \right]$$

Doesn't depend on the selected tree!

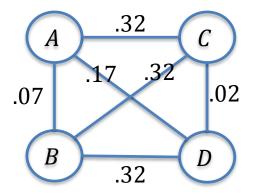
For a fixed tree:

$$\begin{aligned} \max_{\theta} \log l(\theta, T) &= \sum_{i \in V(T)} \sum_{x_{\text{parent}(i)}} \sum_{x_i} N_{x_i, x_{\text{parent}(i)}} \log \frac{N_{x_i, x_{\text{parent}(i)}}}{N_{x_{\text{parent}(i)}}} \\ &= \sum_{i \in V(T)} \left[\sum_{x_i} N_{x_i} \log N_{x_i} + \sum_{x_{\text{parent}(i)}} \sum_{x_i} N_{x_i, x_{\text{parent}(i)}} \log \frac{N_{x_i, x_{\text{parent}(i)}}}{N_{x_i} N_{x_{\text{parent}(i)}}} \right] \\ &= \left[\sum_{i \in V} \sum_{x_i} N_{x_i} \log N_{x_i} \right] + \left(\sum_{(i,j) \in E(T)} \sum_{x_i, x_j} N_{x_i, x_j} \log \frac{N_{x_i, x_j}}{N_{x_i} N_{x_j}} \right) \right] \\ &\text{This is the (empirical) mutual information, usually denoted } I(x_i; x_j) \end{aligned}$$

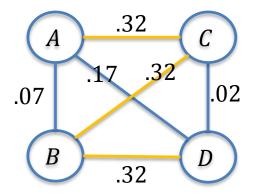
UT D

• To maximize the log-likelihood, it then suffices to choose the tree *T* that maximizes

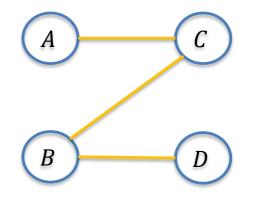
$$\max_{T} \sum_{i,j} I(x_i; x_j)$$


- This problem can be solved by finding the maximum weight spanning tree in the complete graph with edge weight w_{ij} given by the mutual information over the edge (i, j)
 - Greedy algorithm works: at each step, pick the largest remaining edge that does not form a cycle when added to the already selected edges

- To use this technique for learning, we simply compute the mutual information for each edge using the empirical probability distributions and then find the max-weight spanning tree
- As a result, we can learn tree-structured BNs in polynomial time
 - Can we generalize this to all DAGs?


Chow-Liu Trees: Example

• Edge weights correspond to empirical mutual information for the earlier samples


Chow-Liu Trees: Example

• Edge weights correspond to empirical mutual information for the earlier samples

Chow-Liu Trees: Example

- Any directed tree (where each node has one parent) over these edges maximizes the log-likelihood
 - Why doesn't the direction matter?

Approach 2: Penalized Likelihood

 Add a penalty term to the log-likelihood that can depend on the number of samples and the chosen structure

$$\ell(G,\theta) = \sum_{m} \log p_G(x^m | \theta) - \eta(M) Dim(G)$$

• $\eta(M)$ is only a function of the number of samples

 $-\eta(M) = constant$ called the Akaike information criterion

$$-\eta(M) = \frac{\log(M)}{2}$$
 called the Bayesian information criterion

• Dim(G) is the number of parameters needed to represent G

