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Bayesian Networks



Recap

• Last time:

– Course logistics

– Review of basic probability

• Today:

– Independent set example

– What makes one probability distribution “better” than another?

– Bayesian networks
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Graphs & Independent Sets

• A graph 𝐺 = (𝑉, 𝐸) is defined by a set of vertices 𝑉 and a 

set of edges 𝐸 ⊆ 𝑉 × 𝑉 (i.e., edges correspond to pairs of 

vertices)
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𝐸 = { 1,2 , 1,3 , 2,3 , 1,4 }



Graphs & Independent Sets

• A set 𝑆 ⊆ 𝑉 is an independent set if there does not exist an 

edge in 𝐸 joining any pair of vertices in 𝑆
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Graphs & Independent Sets

• A set 𝑆 ⊆ 𝑉 is an independent set if there does not exist an 

edge in 𝐸 joining any pair of vertices in 𝑆
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𝐸 = { 1,2 , 1,3 , 2,3 , 1,4 }

{1,4} is not an independent set!



Graphs & Independent Sets

• A set 𝑆 ⊆ 𝑉 is an independent set if there does not exist an 

edge in 𝐸 joining any pair of vertices in 𝑆
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{2,4} is an independent set



Example: Independent Sets

• Let Ω be the set of all vertex subsets in a graph 𝐺 = (𝑉, 𝐸)

• Let 𝑝 be the uniform probability distribution over all independent sets 

in Ω

• Define for each 𝑣 ∈ 𝑉 and each subset of vertices𝜔

𝑋𝑣 𝜔 = 1, if 𝑣 ∈ 𝜔 and 

𝑋𝑣 𝜔 = 0,          otherwise 

• 𝑝 𝑋𝑣 = 1 is the fraction of all independent sets in 𝐺 containing 𝑣

• 𝑝 𝑥1, … , 𝑥𝑛 ≠ 0 if and only if the 𝑥’s define an independent set
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Example: Independent Sets

Consider the graph on the left, with the 

sample space and probabilities from the 

last slide

• 𝑝 𝑋1 = 1, 𝑋2 = 0, 𝑋3 = 0, 𝑋4 = 1 = ?

• 𝑝 𝑋1 = 0, 𝑋2 = 1, 𝑋3 = 1, 𝑋4 = 0 = ?

• 𝑝 𝑋2 = 1 = ?
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Example: Independent Sets

Consider the graph on the left, with the 

sample space and probabilities from the 

last slide

• 𝑝 𝑋1 = 1, 𝑋2 = 0, 𝑋3 = 0, 𝑋4 = 1 = 0

• 𝑝 𝑋1 = 0, 𝑋2 = 1, 𝑋3 = 1, 𝑋4 = 0 = ?
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Example: Independent Sets

Consider the graph on the left, with the 

sample space and probabilities from the 

last slide

• 𝑝 𝑋1 = 1, 𝑋2 = 0, 𝑋3 = 0, 𝑋4 = 1 = 0

• 𝑝 𝑋1 = 0, 𝑋2 = 1, 𝑋3 = 1, 𝑋4 = 0 = 1/6

• 𝑝 𝑋2 = 1 = ?
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Example: Independent Sets

Consider the graph on the left, with the 

sample space and probabilities from the 

last slide

• 𝑝 𝑋1 = 1, 𝑋2 = 0, 𝑋3 = 0, 𝑋4 = 1 = 0

• 𝑝 𝑋1 = 0, 𝑋2 = 1, 𝑋3 = 1, 𝑋4 = 0 = 1/6

• 𝑝 𝑋2 = 1 = 1/3
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Example: Independent Sets

• How large of a table is needed to store an arbitrary distribution 

𝑝 𝑋𝑉 over subsets of a given graph 𝐺 = (𝑉, 𝐸)? 
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Example: Independent Sets

• How large of a table is needed to store an arbitrary distribution 

𝑝 𝑋𝑉 over subsets of a given graph 𝐺 = (𝑉, 𝐸)? 

𝟐 𝑽 -1
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Computational Issue #1

• How much storage space is required to represent a given 

joint probability distribution?

– Can we do better than the worst case?

– What properties of the joint distribution affect this number?
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Structured Distributions

• Consider a general joint distribution 𝑝(𝑋1, … , 𝑋𝑛) over binary 

valued random variables

• If 𝑋1, … , 𝑋𝑛 are mutually independent random variables, then

𝑝 𝑥1, … , 𝑥𝑛 = 𝑝 𝑥1 …𝑝(𝑥𝑛)

• How much information is needed to store the joint distribution?

?
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Structured Distributions

• Consider a general joint distribution 𝑝(𝑋1, … , 𝑋𝑛) over binary 

valued random variables

• If 𝑋1, … , 𝑋𝑛 are mutually independent random variables, then

𝑝 𝑥1, … , 𝑥𝑛 = 𝑝 𝑥1 …𝑝(𝑥𝑛)

• How much information is needed to store the joint distribution?

𝒏 numbers

• This model is boring:  knowing the value of any one variable tells you 

nothing about the others
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Structured Distributions

• Consider a general joint distribution 𝑝(𝑋1, … , 𝑋𝑛) over binary 

valued random variables

• If 𝑋1, … , 𝑋𝑛 are mutually, conditionally independent given a different 

random variable 𝑌, then

𝑝 𝑥1, … , 𝑥𝑛|𝑦 = 𝑝 𝑥1|𝑦 …𝑝 𝑥𝑛 𝑦

and

𝑝 𝑦, 𝑥1, … , 𝑥𝑛 = 𝑝(𝑦)𝑝 𝑥1|𝑦 …𝑝(𝑥𝑛|𝑦)

• These models turn out to be surprisingly powerful, despite looking 

nearly identical to the previous case!

17



Structured Distributions

• Consider a different joint distribution 𝑝(𝑋1, … , 𝑋𝑛) over binary 

valued random variables

• Suppose, for 𝑖 > 2, 𝑋𝑖 is independent of 𝑋1, … , 𝑋𝑖−2 given 𝑋𝑖−1

𝑝 𝑥1, … , 𝑥𝑛 = 𝑝 𝑥1 𝑝 𝑥2 𝑥1 …𝑝(𝑥𝑛|𝑥1, … , 𝑥𝑛−1)

= 𝑝 𝑥1 𝑝 𝑥2 𝑥1 𝑝 𝑥3 𝑥2 …𝑝(𝑥𝑛|𝑥𝑛−1)

• How much storage is needed to represent this model?

?

• This distribution is chain-like
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Structured Distributions

• Consider a different joint distribution 𝑝(𝑋1, … , 𝑋𝑛) over binary 

valued random variables

• Suppose, for 𝑖 > 2, 𝑋𝑖 is independent of 𝑋1, … , 𝑋𝑖−2 given 𝑋𝑖−1

𝑝 𝑥1, … , 𝑥𝑛 = 𝑝 𝑥1 𝑝 𝑥2 𝑥1 …𝑝(𝑥𝑛|𝑥1, … , 𝑥𝑛−1)

= 𝑝 𝑥1 𝑝 𝑥2 𝑥1 𝑝 𝑥3 𝑥2 …𝑝(𝑥𝑛|𝑥𝑛−1)

• How much storage is needed to represent this model?

𝟐𝒏 − 𝟏

• This distribution is chain-like
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Computational Issue #2

• Given a joint probability distribution (as a table), how 

complicated is it to compute individual probabilities?

– Computing 𝑝(𝑋1 = 𝑥1) from a joint probability distribution 

𝑝(𝑋1 = 𝑥1, … , 𝑋𝑛 = 𝑥𝑛) is one type of statistical inference
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Marginal Distributions

• Given a joint distribution 𝑝(𝑋1, … , 𝑋𝑛), the marginal distribution 

over the 𝑖𝑡ℎrandom variable is given by

𝑝𝑖 𝑋𝑖 = 𝑥𝑖 =෍

𝑥1

෍

𝑥2

…෍

𝑥𝑖−1

෍

𝑥𝑖+1

…෍

𝑥𝑛

𝑝(𝑋1 = 𝑥1, … , 𝑋𝑛 = 𝑥𝑛)

• In general, marginal distributions are obtained by fixing some subset 

of the variables and summing out over the others

– This can be an expensive operation!
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Inference/Prediction

• Given fixed values of some subset, 𝐸, of the random variables, 

compute the conditional probability over the remaining variables, 𝑆

𝑝 𝑋𝑆 𝑋𝐸 = 𝑥𝐸 =
𝑝 𝑋𝑆, 𝑋𝐸 = 𝑥𝐸
𝑝 𝑋𝐸 = 𝑥𝐸

• This involves computing the marginal distribution 𝑝(𝑋𝐸 = 𝑥𝐸), so 

we refer to this as marginal inference
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Inference/Prediction

• Given fixed values of some subset, 𝐸, of the random variables, 

compute the most likely assignment of the remaining variables, 𝑆

argmax
𝑥𝑆

𝑝(𝑋𝑆 = 𝑥𝑠|𝑋𝐸 = 𝑥𝐸)

• This is called maximum a posteriori (MAP) inference

• We don’t need to do marginal inference to compute the MAP 

assignment, why not?
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Computational Issues

• The amount of storage and the complexity of statistical 

inference are both affected by the independence structure 

of the joint probability distribution

– More independence means easier computation and less storage

– Want models that somehow make the underlying independence 

assumptions explicit, so we can take advantage of them 

(expensive to check all of the possible independence 

relationships)
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Bayesian Networks

• A Bayesian network is a directed graphical model that represents 

independence relationships of a given probability distribution

– Directed acyclic graph (DAG), 𝐺 = (𝑉, 𝐸)

• Edges are still pairs of vertices, but the edges (1,2) and (2,1) are now 

distinct in this model

– One node for each random variable

– One conditional probability distribution per node

– Directed edge represents a direct statistical dependence
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Bayesian Networks

• A Bayesian network is a directed graphical model that represents 

independence relationships of a given probability distribution

– Encodes local Markov independence assumptions that each 

node is independent of its non-descendants given its parents

– Corresponds to a factorization of the joint distribution 

𝑝 𝑥1, … , 𝑥𝑛 =ෑ

𝑖

𝑝(𝑥𝑖|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑖))
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Directed Chain

𝑝 𝑥1, … , 𝑥𝑛 = 𝑝 𝑥1 𝑝 𝑥2 𝑥1 𝑝 𝑥3 𝑥2 …𝑝(𝑥𝑛|𝑥𝑛−1)
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𝑋1 𝑋2 𝑋𝑛−1 𝑋𝑛...



An Example

28from Artificial Intelligence: A Modern Approach


