CS 6347
Lecture 2

Bayesian Networks



Recap
|

* Last time:
— Course logistics
— Review of basic probability
* Today:
— Independent set example
— What makes one probability distribution “better”’ than another?

— Bayesian networks




Graphs & Independent Sets

* Agraph G = (V, E) is defined by a set of vertices I/ and a
setofedges E € V X V (i.e., edges correspond to pairs of
vertices)

1 'a V ={1,2,3,4}

a E=1{(12),(13),(23),(1,4)}
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Graphs & Independent Sets

e AsetS <€ Visanindependent set if there does not exist an
edge in E joining any pair of vertices in S

1 'a V ={1,2,3,4}

° E=1{(12),(13),(23),(1,4)}
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Graphs & Independent Sets

e AsetS <€ Visanindependent set if there does not exist an
edge in E joining any pair of vertices in S

V ={1,2,3,4)

E ={(1,2),(13),(23),(1,4)}

{1,4} is not an independent set!

5




Graphs & Independent Sets

e AsetS <€ Visanindependent set if there does not exist an
edge in E joining any pair of vertices in S

{2,4} is an independent set
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V ={1,2,3,4)

E ={(1,2),(13),(23),(1,4)}




Example: Independent Sets

* Let () be the set of all vertex subsetsina graph G = (V, E)

* Letp be the uniform probability distribution over all independent sets
in ()

e Define foreach v € V and each subset of vertices w

X,(w) =1, if v € w and
X,(w) =0, otherwise

* p(X, = 1) isthe fraction of all independent sets in G containing v
* p(xq,...,%x,) # 0ifand only if the x’s define an independent set
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Example: Independent Sets

Consider the graph on the left, with the
sample space and probabilities from the
last slide

. p(X1=1,X2=O’X3=O’X4=1)=?

. p(Xl =0,X,=1,X5=1,X, = 0) =7

c pXp=1) =7




Example: Independent Sets

Consider the graph on the left, with the
sample space and probabilities from the
last slide

¢« pX1=1,X,=0X3=0X,=1)=0

. p(Xl =0,X,=1,X5=1,X, = 0) =7

+ pXp=1) =7




Example: Independent Sets

Consider the graph on the left, with the
sample space and probabilities from the
last slide

¢« pX1=1,X,=0X3=0X,=1)=0

* p(X1:0)X2:1)X3:1)X4:O):1/6

« pXz=1)=7
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Example: Independent Sets

Consider the graph on the left, with the
sample space and probabilities from the
last slide

¢« pX1=1,X,=0X3=0X,=1)=0

* p(X1:0)X2:1)X3:1)X4:O):1/6

+ p(X;=1)=1/3
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Example: Independent Sets

* How large of a table is needed to store an arbitrary distribution
p(Xy ) over subsets of a given graph G = (V, E)?
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Example: Independent Sets

* How large of a table is needed to store an arbitrary distribution
p(Xy ) over subsets of a given graph G = (V, E)?

21VI.1
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Computational Issue #1
e

* How much storage space is required to represent a given
joint probability distribution?

— Can we do better than the worst case?

— What properties of the joint distribution affect this number?
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Structured Distributions

* Consider a general joint distribution p (X, ..., X,,) over binary
valued random variables

* If Xy, ..., X,, are mutually independent random variables, then
p(xX1, ey X)) = 0(x1) ... p(x)
* How much information is needed to store the joint distribution?

?
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Structured Distributions
_

* Consider a general joint distribution p (X, ..., X,,) over binary
valued random variables

* If Xy, ..., X,, are mutually independent random variables, then
p(xy, e, %) = px1) ... p(xp)
* How much information is needed to store the joint distribution?
1 numbers

* This model is boring: knowing the value of any one variable tells you
nothing about the others
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Structured Distributions

* Consider a general joint distribution p (X, ..., X,,) over binary
valued random variables

* If Xy, ..., X;, are mutually, conditionally independent given a different
random variable Y, then

(X1, ooy Xn|y) = p(x1y) . D (X0 y)
and

PV, X1, s X)) = PYIP(X1|Y) .. 0 (X0 ]Y)

* These models turn out to be surprisingly powerful, despite looking
nearly identical to the previous case!
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Structured Distributions
_

 Consider a different joint distribution p(X3, ..., X,,) over binary
valued random variables

* Suppose, fori > 2, X; isindependent of X, ..., X;_, given X;_4

p(x1, . Xp) = p(x)P(x21%1) . (X | X1, ons Xp—q)
= p(x)p(x2]x)p(x3]x3) ... D (X0 [X7—1)

* How much storage is needed to represent this model?

?

* This distribution is chain-like
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Structured Distributions
_

 Consider a different joint distribution p(X3, ..., X,,) over binary
valued random variables

* Suppose, fori > 2, X; isindependent of X, ..., X;_, given X;_4

p(x1, . Xp) = p(x)P(x21%1) . (X | X1, ons Xp—q)
= p(x)p(x2]x)p(x3]x3) ... D (X0 [X7—1)

* How much storage is needed to represent this model?
2n—1

* This distribution is chain-like
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Computational Issue #2
I

* @Given a joint probability distribution (as a table), how
complicated is it to compute individual probabilities?

— Computing p(X; = x;) from a joint probability distribution
p(X1 = x4, ..., X;;, = Xx;,) is one type of statistical inference
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Marginal Distributions
e

* Given ajoint distribution p(X4, ..., X;,), the marginal distribution
over the i*"random variable is given by

p;(X; = x;) = 77 7 7 ...Ep(Xl = X1, ..., Xy = Xp)

X1 X3 Xi—1 Xi+1 Xn

* In general, marginal distributions are obtained by fixing some subset
of the variables and summing out over the others

— This can be an expensive operation!
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Inference/Prediction
I

* Given fixed values of some subset, £, of the random variables,
compute the conditional probability over the remaining variables, S

p(Xs, Xp = xg)
p(Xg = xg)

p(Xs|Xg = xg) =

* This involves computing the marginal distribution p (X = xg), S0
we refer to this as marginal inference
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Inference/Prediction
-

» Given fixed values of some subset, E, of the random variables,
compute the most likely assignment of the remaining variables, S

argmax p(Xs = xs|Xg = xg)
Xs

* This is called maximum a posteriori (VIAP) inference

 We don’t need to do marginal inference to compute the MAP
assignment, why not?
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Computational Issues
-

* The amount of storage and the complexity of statistical
inference are both affected by the independence structure
of the joint probability distribution

— More independence means easier computation and less storage

— Want models that somehow make the underlying independence
assumptions explicit, so we can take advantage of them
(expensive to check all of the possible independence
relationships)
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Bayesian Networks
-

* ABayesian network is a directed graphical model that represents
independence relationships of a given probability distribution

— Directed acyclic graph (DAG), G = (V, E)

»  Edges are still pairs of vertices, but the edges (1,2) and (2,1) are now
distinct in this model

— One node for each random variable
— One conditional probability distribution per node

— Directed edge represents a direct statistical dependence
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Bayesian Networks
I

 ABayesian network is a directed graphical model that represents
independence relationships of a given probability distribution

— Encodes local Markov independence assumptions that each
node is independent of its non-descendants given its parents

— Corresponds to a factorization of the joint distribution

P(Xl, ---»xn) — Hp(xilxparents(i))
L
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Directed Chain

p(x1, oy X)) = p(x)D(x2]x1)p(x3]2%2) oo D (X0 | X0 —1)
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An Example

P(E)

P(B)
Burglary | Earthquake 002

B E [PAB.E)
T T| .95

T F| .94

F T| .29

F F | .00l

P(J|A) A [P(M|A)
F| .05 F| .01

from Artificial Intelligence: A Modern Approach 28



