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Lectures 6 & 7

Approximate MAP Inference



Belief Propagation

• Efficient method for inference on a tree

• Represent the variable elimination process as a collection of 
messages passed between nodes in the tree

– The messages keep track of the potential functions 
produced throughout the elimination process
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Belief Propagation (for pairwise MRFs)

• 𝑝 𝑥1, … , 𝑥𝑛 =
1

𝑍
ς𝑖∈𝑉𝜙𝑖(𝑥𝑖)ς 𝑖,𝑗 ∈𝐸𝜓𝑖𝑗(𝑥𝑖 , 𝑥𝑗)

𝑚𝑖→𝑗 𝑥𝑗 =

𝑥𝑖

𝜙𝑖 𝑥𝑖 𝜓𝑖𝑗 𝑥𝑖 , 𝑥𝑗 ෑ

𝑘∈𝑁 𝑖 ∖𝑗

𝑚𝑘→i(𝑥𝑖)

where 𝑁(𝑖) is the set of neighbors of node 𝑖 in the graph

• Messages are passed in two phases:  from the leaves up to 
the root and then from the root down to the leaves
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Sum-Product

• To construct the marginal distributions, we look at the max-
marginal produced by the algorithm

𝑏𝑖 𝑥𝑖 =
1

𝑍
𝜙𝑖 𝑥𝑖 ෑ

𝑘∈N 𝑖

𝑚𝑘→𝑖(𝑥𝑖)

𝑏𝑖𝑗 𝑥𝑖 , 𝑥𝑗 =
1

𝑍
𝜙𝑖 𝑥𝑖 𝜙𝑗 𝑥𝑗 𝜓𝑖𝑗 𝑥𝑖 , 𝑥𝑗 ෑ

𝑘∈N 𝑖 \j

𝑚𝑘→𝑖 𝑥𝑖 ෑ

𝑘∈N 𝑗 \i

𝑚𝑘→𝑗(𝑥𝑗)

• Last time, we argued that, on a tree,

𝑏𝑖 𝑥𝑖 = ∑
𝑥1,…,𝑥𝑖−1,𝑥𝑖+1,…,𝑥𝑛

𝑝(𝑥1, … , 𝑥𝑛)
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MAP Inference

• Compute the most likely assignment under the (conditional) 
joint distribution

𝑥∗ = argmax
𝑥

𝑝(𝑥)

• Can encode 3-SAT, maximum independent set problem, etc. as 
a MAP inference problem

5



Max-Product (for pairwise MRFs)

• 𝑝 𝑥1, … , 𝑥𝑛 =
1

𝑍
ς𝑖∈𝑉𝜙𝑖(𝑥𝑖)ς 𝑖,𝑗 ∈𝐸𝜓𝑖𝑗(𝑥𝑖 , 𝑥𝑗)

𝑚𝑖→𝑗 𝑥𝑗 = max
𝑥𝑖

𝜙𝑖 𝑥𝑖 𝜓𝑖𝑗 𝑥𝑖 , 𝑥𝑗 ෑ

𝑘∈𝑁 𝑖 ∖𝑗

𝑚𝑘→i(𝑥𝑖)

• Guaranteed to produced the correct answer on a tree

• Typical applications do not require computing 𝑍
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Max-Product

• To construct the maximizing assignment, we look at the max-
marginal produced by the algorithm

𝜇𝑖 𝑥𝑖 =
1

𝑍
𝜙𝑖 𝑥𝑖 ෑ

𝑘∈N 𝑖

𝑚𝑘→𝑖(𝑥𝑖)

𝜇𝑖𝑗 𝑥𝑖 , 𝑥𝑗 =
1

𝑍
𝜙𝑖 𝑥𝑖 𝜙𝑗 𝑥𝑗 𝜓𝑖𝑗 𝑥𝑖 , 𝑥𝑗 ෑ

𝑘∈N 𝑖 ∖𝑗

𝑚𝑘→𝑖 𝑥𝑖 ෑ

𝑘∈N 𝑗 ∖𝑖

𝑚𝑘→𝑗(𝑥𝑗)

• Again, on a tree,

𝜇𝑖 𝑥𝑖 = max
𝑥1,…,𝑥𝑖−1,𝑥𝑖+1,…,𝑥𝑛

𝑝(𝑥1, … , 𝑥𝑛)
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Reparameterization

• The messages passed in max-product and sum-product can be 
used to construct a reparameterization of the joint 
distribution

𝑝 𝑥1, … , 𝑥𝑛 =
1

𝑍
ෑ

𝑖∈𝑉

𝜙𝑖(𝑥𝑖) ෑ

𝑖,𝑗 ∈𝐸

𝜓𝑖𝑗(𝑥𝑖 , 𝑥𝑗)

and

𝑝 𝑥1, … , 𝑥𝑛 =
1

𝑍
ෑ

𝑖∈𝑉

𝜙𝑖 𝑥𝑖 ෑ

𝑘∈𝑁(𝑖)

𝑚𝑘→𝑖(𝑥𝑖) ෑ

𝑖,𝑗 ∈𝐸

𝜓𝑖𝑗 𝑥𝑖 , 𝑥𝑗

𝑚𝑖→𝑗 𝑥𝑗 𝑚𝑗→𝑖 𝑥𝑖
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Reparameterization

𝑝 𝑥1, … , 𝑥𝑛 =
1

𝑍
ෑ

𝑖∈𝑉

𝜙𝑖 𝑥𝑖 ෑ

𝑘∈𝑁(𝑖)

𝑚𝑘→𝑖(𝑥𝑖) ෑ

𝑖,𝑗 ∈𝐸

𝜓𝑖𝑗 𝑥𝑖 , 𝑥𝑗

𝑚𝑖→𝑗 𝑥𝑗 𝑚𝑗→𝑖 𝑥𝑖

• Reparameterizations do not change the partition function, the 
MAP solution, or the factorization of the joint distribution

– They push "weight" around between the different factors

• Other reparameterizations are possible/useful
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Max-Product Tree Reparameterization

• On a tree, the joint distribution has a special form

𝑝 𝑥1, … , 𝑥𝑛 =
1

𝑍′
ෑ

𝑖∈𝑉

𝜇𝑖(𝑥𝑖) ෑ

𝑖,𝑗 ∈𝐸

𝜇𝑖𝑗(𝑥𝑖 , 𝑥𝑗)

𝜇𝑖 𝑥𝑖 𝜇𝑗(𝑥𝑗)

• 𝜇𝑖 is the max-marginal distribution of the 𝑖𝑡ℎ variable and 𝜇𝑖𝑗
is the max-marginal distribution for the edge 𝑖, 𝑗 ∈ 𝐸

• How to express 𝜇𝑖𝑗 as a function of the messages and the 

potential functions?

10



MAP in General MRFs

• While max-product solves the MAP problem on trees, the 
MAP problem in MRFs is, in general, intractable (could use it 
to find a maximal independent set!)

– Don’t expect to be able to solve the problem exactly

– Will settle for “good” approximations

– Can use max-product messages as a starting point

• This is an active area of research
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Upper Bounds

max
𝑥1,…,𝑥𝑛

𝑝 𝑥1, … , 𝑥𝑛 ≤
1

𝑍
ෑ

𝑖∈𝑉

max
𝑥𝑖

𝜙𝑖(𝑥𝑖) ෑ

𝑖,𝑗 ∈𝐸

max
𝑥𝑖,𝑥𝑗

𝜓𝑖𝑗(𝑥𝑖 , 𝑥𝑗)

• This provides an upper bound on the optimization problem

– Do other reparameterizations provide better bounds?
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Duality

𝐿 𝑚 =
1

𝑍
ෑ

𝑖∈𝑉

max
𝑥𝑖

𝜙𝑖 𝑥𝑖 ෑ

𝑘∈𝑁(𝑖)

𝑚𝑘→𝑖(𝑥𝑖) ෑ

𝑖,𝑗 ∈𝐸

max
𝑥𝑖,𝑥𝑗

𝜓𝑖𝑗 𝑥𝑖 , 𝑥𝑗

𝑚𝑖→𝑗 𝑥𝑗 𝑚𝑗→𝑖 𝑥𝑖

• We construct a dual optimization problem

min
𝑚≥0

𝐿(𝑚) ≥ max
𝑥

𝑝(𝑥)

• Equivalently, we can minimize the convex function 𝑈
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𝑈 log𝑚 = − log𝑍 +

𝑖∈𝑉

max
𝑥𝑖

log𝜙𝑖 𝑥𝑖 + 

𝑘∈𝑁 𝑖

log𝑚𝑘→𝑖 𝑥𝑖

+ 

𝑖,𝑗 ∈𝐸

max
𝑥𝑖,𝑥𝑗

log𝜓𝑖𝑗 𝑥𝑖 , 𝑥𝑗 − log𝑚𝑖→𝑗 𝑥𝑗 − log𝑚𝑗→𝑖 𝑥𝑖



Convex and Concave Functions
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Convex Concave Neither



Optimizing the Dual

• Minimizing 𝑈(log𝑚)

– Block coordinate descent:  improve the bound by changing 
only a small subset of the messages at a time (usually look 
like message-passing algorithms)

– Subgradient descent:  variant of gradient descent for non-
differentiable functions

– Many more optimization methods…

• Note that min
𝑚≥0

𝐿(𝑚) is not necessarily equal to max
𝑥

𝑝(𝑥), so 

this procedure only yields an approximation to the maximal 
value
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Gradient Descent

• Iterative method to minimize a differentiable convex function 
𝑓 (for non-differentiable use subgradients)

– Intuition: step along a direction in which the function is 
decreasing

• Pick an initial point 𝑥0

• Iterate until convergence

𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑡𝛻𝑓(𝑥𝑡)

where 𝛾𝑡 =
2

2+𝑡
is the 𝑡𝑡ℎ step size
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Gradient Descent

source: Wikipedia17



Subgradients

• For a convex function 𝑔(𝑥), a subgradient at a point 𝑥0 is any 
tangent line/plane through the point 𝑥0 that underestimates 
the function everywhere

𝑥

𝑔(𝑥)

𝑥0
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Subgradients

• For a convex function 𝑔(𝑥), a subgradient at a point 𝑥0 is any 
tangent line/plane through the point 𝑥0 that underestimates 
the function everywhere

𝑥

𝑔(𝑥)

𝑥0
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Subgradients

• For a convex function 𝑔(𝑥), a subgradient at a point 𝑥0 is any 
tangent line/plane through the point 𝑥0 that underestimates 
the function everywhere

𝑥

𝑔(𝑥)

𝑥0
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Subgradients

• For a convex function 𝑔(𝑥), a subgradient at a point 𝑥0 is any 
tangent line/plane through the point 𝑥0 that underestimates 
the function everywhere

𝑥

𝑔(𝑥)

𝑥0

If 0 is a subgradient at 
𝑥0, then 𝑥0 is a global 

minimum
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Integer Programming

• We can also express the MAP problem as a 0,1 integer 
programming problem

– Convert a maximum of a product into a maximum of a sum 
by taking logs

– Introduce indicator variables, 𝜏, to represent the chosen 
assignment
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Integer Programming

• Introduce indicator variables for a specific assignment

– 𝜏𝑖 𝑥𝑖 ∈ {0,1} for each 𝑖 ∈ 𝑉 and 𝑥𝑖

– 𝜏𝑖𝑗 𝑥𝑖 , 𝑥𝑗 ∈ {0,1} for each 𝑖, 𝑗 ∈ 𝐸 and 𝑥𝑖 , 𝑥𝑗

• The linear objective function is then

max
𝜏



𝑖∈𝑉



𝑥𝑖

𝜏𝑖 𝑥𝑖 log𝜙𝑖 𝑥𝑖 + 

𝑖,𝑗 ∈𝐸



𝑥𝑖,𝑥𝑗

𝜏𝑖𝑗 𝑥𝑖 , 𝑥𝑗 log𝜓𝑖𝑗(𝑥𝑖 , 𝑥𝑗)

where the 𝜏's are required to satisfy certain marginalization 
conditions
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Integer Programming

max
𝜏



𝑖∈𝑉



𝑥𝑖

𝜏𝑖 𝑥𝑖 log𝜙𝑖 𝑥𝑖 + 

𝑖,𝑗 ∈𝐸



𝑥𝑖,𝑥𝑗

𝜏𝑖𝑗 𝑥𝑖 , 𝑥𝑗 log𝜓𝑖𝑗(𝑥𝑖 , 𝑥𝑗)

such that
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For all 𝑖 ∈ 𝑉

For all 𝑖, 𝑗 ∈ 𝐸, 𝑥𝑖

For all 𝑖 ∈ 𝑉, 𝑥𝑖

For all 𝑖, 𝑗 ∈ 𝐸, 𝑥𝑖 , 𝑥𝑗



𝑥𝑖

𝜏𝑖 𝑥𝑖 = 1



𝑥𝑗

𝜏𝑖𝑗(𝑥𝑖 , 𝑥𝑗) = 𝜏𝑖(𝑥𝑖)

𝜏𝑖 𝑥𝑖 ∈ {0,1}

𝜏𝑖𝑗 𝑥𝑖 , 𝑥𝑗 ∈ {0,1}



Integer Programming

max
𝜏



𝑖∈𝑉



𝑥𝑖

𝜏𝑖 𝑥𝑖 log𝜙𝑖 𝑥𝑖 + 

𝑖,𝑗 ∈𝐸



𝑥𝑖,𝑥𝑗

𝜏𝑖𝑗 𝑥𝑖 , 𝑥𝑗 log𝜓𝑖𝑗(𝑥𝑖 , 𝑥𝑗)

such that
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These 
constraints 
define the 
vertices of 
the marginal 
polytope
(set of all 
valid 
marginal 
distributions)

For all 𝑖 ∈ 𝑉

For all 𝑖, 𝑗 ∈ 𝐸, 𝑥𝑖

For all 𝑖 ∈ 𝑉, 𝑥𝑖

For all 𝑖, 𝑗 ∈ 𝐸, 𝑥𝑖 , 𝑥𝑗



𝑥𝑖

𝜏𝑖 𝑥𝑖 = 1



𝑥𝑗

𝜏𝑖𝑗(𝑥𝑖 , 𝑥𝑗) = 𝜏𝑖(𝑥𝑖)

𝜏𝑖 𝑥𝑖 ∈ {0,1}

𝜏𝑖𝑗 𝑥𝑖 , 𝑥𝑗 ∈ {0,1}



Marginal Polytope

• Given an assignment to all of the random variables, 𝑥∗, can 
construct 𝜏 in the marginal polytope so that the value of the 
objective function is log 𝑝(𝑥∗)

– Set 𝜏𝑖 𝑥𝑖
∗ = 1, and zero otherwise

– Set 𝜏𝑖𝑗 𝑥𝑖
∗, 𝑥𝑗

∗ = 1, and zero otherwise

• Given a 𝜏 in the marginal polytope, can construct an 𝑥∗ such 
that the value of the objective function at 𝜏 is equal to 
log 𝑝(𝑥∗)

– Set 𝑥𝑖
∗ = argmax

xi
𝜏𝑖(𝑥𝑖)
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An Example:  Independent Sets

• What is the integer programming problem corresponding to 
the uniform distribution over independent sets of a graph 
𝐺 = (𝑉, 𝐸)?

𝑝 𝑥𝑉 =
1

𝑍
ෑ

𝑖,𝑗 ∈𝐸

1𝑥𝑖+𝑥𝑗≤1

(worked out on the board)
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Linear Relaxation

• The integer program can be relaxed into a linear program by 
replacing the 0,1 integrality constraints with linear constraints

– This relaxed set of constraints forms the local marginal 
polytope

• The 𝜏’s no longer correspond to an achievable marginal 
distribution, so we call them pseudo-marginals

– We call it a relaxation because the constraints have been 
relaxed:  all solutions to the IP are contained as solutions 
of the LP

• Linear programming problems can be solved in polynomial 
time!
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Linear Relaxation

max
𝜏



𝑖∈𝑉



𝑥𝑖

𝜏𝑖 𝑥𝑖 log𝜙𝑖 𝑥𝑖 + 

𝑖,𝑗 ∈𝐸



𝑥𝑖,𝑥𝑗

𝜏𝑖𝑗 𝑥𝑖 , 𝑥𝑗 log𝜓𝑖𝑗(𝑥𝑖 , 𝑥𝑗)

such that
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For all 𝑖 ∈ 𝑉

For all 𝑖, 𝑗 ∈ 𝐸, 𝑥𝑖

For all 𝑖 ∈ 𝑉, 𝑥𝑖

For all 𝑖, 𝑗 ∈ 𝐸, 𝑥𝑖 , 𝑥𝑗



𝑥𝑖

𝜏𝑖 𝑥𝑖 = 1



𝑥𝑗

𝜏𝑖𝑗(𝑥𝑖 , 𝑥𝑗) = 𝜏𝑖(𝑥𝑖)

𝜏𝑖 𝑥𝑖 ∈ [0,1]

𝜏𝑖𝑗 𝑥𝑖 , 𝑥𝑗 ∈ [0,1]



An Example:  Independent Sets

• What is the linear programming problem corresponding to 
the uniform distribution over independent sets of a graph 
𝐺 = (𝑉, 𝐸)?

𝑝 𝑥𝑉 =
1

𝑍
ෑ

𝑖,𝑗 ∈𝐸

1𝑥𝑖+𝑥𝑗≤1

• The MAP LP is a relaxation of the integer programming 
problem 

– MAP LP could have a better solution… (example in class)
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Tightness of the MAP LP

• When is it that solving the MAP LP (or equivalently, the dual 
optimization) is the same as solving the integer programming 
problem?

– We say that there is no gap when this is the case

– The answer can be expressed as a structural property of 
the graph (beyond the scope of this course)
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