CS 6347

Lectures 6 \& 7

Approximate MAP Inference

Belief Propagation

- Efficient method for inference on a tree
- Represent the variable elimination process as a collection of messages passed between nodes in the tree
- The messages keep track of the potential functions produced throughout the elimination process

Belief Propagation (for pairwise MRFs)

- $p\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{Z} \prod_{i \in V} \phi_{i}\left(x_{i}\right) \prod_{(i, j) \in E} \psi_{i j}\left(x_{i}, x_{j}\right)$

$$
m_{i \rightarrow j}\left(x_{j}\right)=\sum_{x_{i}} \phi_{i}\left(x_{i}\right) \psi_{i j}\left(x_{i}, x_{j}\right) \prod_{k \in N(i) \backslash j} m_{k \rightarrow \mathrm{i}}\left(x_{i}\right)
$$

where $N(i)$ is the set of neighbors of node i in the graph

- Messages are passed in two phases: from the leaves up to the root and then from the root down to the leaves

Sum-Product

- To construct the marginal distributions, we look at the maxmarginal produced by the algorithm

$$
\begin{gathered}
b_{i}\left(x_{i}\right)=\frac{1}{Z} \phi_{i}\left(x_{i}\right) \prod_{k \in \mathrm{~N}(i)} m_{k \rightarrow i}\left(x_{i}\right) \\
b_{i j}\left(x_{i}, x_{j}\right)=\frac{1}{Z} \phi_{i}\left(x_{i}\right) \phi_{j}\left(x_{j}\right) \psi_{i j}\left(x_{i}, x_{j}\right)\left(\prod_{k \in \mathrm{~N}(i) \backslash \mathrm{j}} m_{k \rightarrow i}\left(x_{i}\right)\right)\left(\prod_{k \in \mathrm{~N}(j) \backslash \mathrm{i}} m_{k \rightarrow j}\left(x_{j}\right)\right)
\end{gathered}
$$

- Last time, we argued that, on a tree,

$$
b_{i}\left(x_{i}\right)=\sum_{x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}} p\left(x_{1}, \ldots, x_{n}\right)
$$

MAP Inference

- Compute the most likely assignment under the (conditional) joint distribution

$$
x^{*}=\arg \max _{x} p(x)
$$

- Can encode 3-SAT, maximum independent set problem, etc. as a MAP inference problem

Max-Product (for pairwise MRFs)

- $p\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{z} \prod_{i \in V} \phi_{i}\left(x_{i}\right) \prod_{(i, j) \in E} \psi_{i j}\left(x_{i}, x_{j}\right)$

$$
m_{i \rightarrow j}\left(x_{j}\right)=\max _{x_{i}}\left[\phi_{i}\left(x_{i}\right) \psi_{i j}\left(x_{i}, x_{j}\right) \prod_{k \in N(i) \backslash j} m_{k \rightarrow \mathrm{i}}\left(x_{i}\right)\right]
$$

- Guaranteed to produced the correct answer on a tree
- Typical applications do not require computing Z

Max-Product

- To construct the maximizing assignment, we look at the maxmarginal produced by the algorithm

$$
\begin{gathered}
\mu_{i}\left(x_{i}\right)=\frac{1}{Z} \phi_{i}\left(x_{i}\right) \prod_{k \in \mathrm{~N}(i)} m_{k \rightarrow i}\left(x_{i}\right) \\
\mu_{i j}\left(x_{i}, x_{j}\right)=\frac{1}{Z} \phi_{i}\left(x_{i}\right) \phi_{j}\left(x_{j}\right) \psi_{i j}\left(x_{i}, x_{j}\right)\left(\prod_{k \in \mathrm{~N}(i) \backslash j} m_{k \rightarrow i}\left(x_{i}\right)\right)\left(\prod_{k \in \mathrm{~N}(j) \backslash i} m_{k \rightarrow j}\left(x_{j}\right)\right)
\end{gathered}
$$

- Again, on a tree,

$$
\mu_{i}\left(x_{i}\right)=\max _{x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}} p\left(x_{1}, \ldots, x_{n}\right)
$$

Reparameterization

- The messages passed in max-product and sum-product can be used to construct a reparameterization of the joint distribution

$$
\begin{gathered}
p\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{Z} \prod_{i \in V} \phi_{i}\left(x_{i}\right) \prod_{(i, j) \in E} \psi_{i j}\left(x_{i}, x_{j}\right) \\
\text { and }
\end{gathered}
$$

$$
p\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{Z} \prod_{i \in V}\left[\phi_{i}\left(x_{i}\right) \prod_{k \in N(i)} m_{k \rightarrow i}\left(x_{i}\right)\right] \prod_{(i, j) \in E} \frac{\psi_{i j}\left(x_{i}, x_{j}\right)}{m_{i \rightarrow j}\left(x_{j}\right) m_{j \rightarrow i}\left(x_{i}\right)}
$$

Reparameterization

$$
p\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{Z} \prod_{i \in V}\left[\phi_{i}\left(x_{i}\right) \prod_{k \in N(i)} m_{k \rightarrow i}\left(x_{i}\right)\right] \prod_{(i, j) \in E} \frac{\psi_{i j}\left(x_{i}, x_{j}\right)}{m_{i \rightarrow j}\left(x_{j}\right) m_{j \rightarrow i}\left(x_{i}\right)}
$$

- Reparameterizations do not change the partition function, the MAP solution, or the factorization of the joint distribution
- They push "weight" around between the different factors
- Other reparameterizations are possible/useful

Max-Product Tree Reparameterization

- On a tree, the joint distribution has a special form

$$
p\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{Z^{\prime}} \prod_{i \in V} \mu_{i}\left(x_{i}\right) \prod_{(i, j) \in E} \frac{\mu_{i j}\left(x_{i}, x_{j}\right)}{\mu_{i}\left(x_{i}\right) \mu_{j}\left(x_{j}\right)}
$$

- μ_{i} is the max-marginal distribution of the $i^{t h}$ variable and $\mu_{i j}$ is the max-marginal distribution for the edge $(i, j) \in E$
- How to express $\mu_{i j}$ as a function of the messages and the potential functions?

MAP in General MRFs

- While max-product solves the MAP problem on trees, the MAP problem in MRFs is, in general, intractable (could use it to find a maximal independent set!)
- Don't expect to be able to solve the problem exactly
- Will settle for "good" approximations
- Can use max-product messages as a starting point
- This is an active area of research

Upper Bounds

$\max _{x_{1}, \ldots, x_{n}} p\left(x_{1}, \ldots, x_{n}\right) \leq \frac{1}{Z} \prod_{i \in V} \max _{x_{i}} \phi_{i}\left(x_{i}\right) \prod_{(i, j) \in E} \max _{x_{i}, x_{j}} \psi_{i j}\left(x_{i}, x_{j}\right)$

- This provides an upper bound on the optimization problem
- Do other reparameterizations provide better bounds?

Duality

$$
L(m)=\frac{1}{Z} \prod_{i \in V} \max _{x_{i}}\left[\phi_{i}\left(x_{i}\right) \prod_{k \in N(i)} m_{k \rightarrow i}\left(x_{i}\right)\right] \prod_{(i, j) \in E} \max _{x_{i}, x_{j}}\left[\frac{\psi_{i j}\left(x_{i}, x_{j}\right)}{m_{i \rightarrow j}\left(x_{j}\right) m_{j \rightarrow i}\left(x_{i}\right)}\right]
$$

- We construct a dual optimization problem

$$
\min _{m \geq 0} L(m) \geq \max _{x} p(x)
$$

- Equivalently, we can minimize the convex function U

$$
\begin{aligned}
U(\log m)= & -\log Z+\sum_{i \in V} \max _{x_{i}}\left[\log \phi_{i\left(x_{i}\right)}+\sum_{\{k \in N(i)\}} \log m_{k \rightarrow i}\left(x_{i}\right)\right] \\
& +\sum_{(i, j) \in E} \max _{x_{i}, x_{j}}\left[\log \psi_{i j}\left(x_{i}, x_{j}\right)-\log m_{i \rightarrow j}\left(x_{j}\right)-\log m_{j \rightarrow i}\left(x_{i}\right)\right]
\end{aligned}
$$

Convex and Concave Functions

Optimizing the Dual

- Minimizing $U(\log m)$
- Block coordinate descent: improve the bound by changing only a small subset of the messages at a time (usually look like message-passing algorithms)
- Subgradient descent: variant of gradient descent for nondifferentiable functions
- Many more optimization methods...
- Note that $\min _{m \geq 0} L(m)$ is not necessarily equal to $\max _{x} p(x)$, so this procedure only yields an approximation to the maximal value

Gradient Descent

- Iterative method to minimize a differentiable convex function f (for non-differentiable use subgradients)
- Intuition: step along a direction in which the function is decreasing
- Pick an initial point x_{0}
- Iterate until convergence

$$
x_{t+1}=x_{t}-\gamma_{t} \nabla f\left(x_{t}\right)
$$

where $\gamma_{t}=\frac{2}{2+t}$ is the $t^{t h}$ step size

Gradient Descent

source: Wikipedia

Subgradients

- For a convex function $g(x)$, a subgradient at a point x^{0} is any tangent line/plane through the point x^{0} that underestimates the function everywhere

Subgradients

- For a convex function $g(x)$, a subgradient at a point x^{0} is any tangent line/plane through the point x^{0} that underestimates the function everywhere

Subgradients

- For a convex function $g(x)$, a subgradient at a point x^{0} is any tangent line/plane through the point x^{0} that underestimates the function everywhere

Subgradients

- For a convex function $g(x)$, a subgradient at a point x^{0} is any tangent line/plane through the point x^{0} that underestimates the function everywhere

If $\overrightarrow{0}$ is a subgradient at x^{0}, then x^{0} is a global minimum

Integer Programming

- We can also express the MAP problem as a 0,1 integer programming problem
- Convert a maximum of a product into a maximum of a sum by taking logs
- Introduce indicator variables, τ, to represent the chosen assignment

Integer Programming

- Introduce indicator variables for a specific assignment

$$
\begin{aligned}
& -\tau_{i}\left(x_{i}\right) \in\{0,1\} \text { for each } i \in V \text { and } x_{i} \\
& -\tau_{i j}\left(x_{i}, x_{j}\right) \in\{0,1\} \text { for each }(i, j) \in E \text { and } x_{i}, x_{j}
\end{aligned}
$$

- The linear objective function is then

$$
\max _{\tau} \sum_{i \in V} \sum_{x_{i}} \tau_{i}\left(x_{i}\right) \log \phi_{i}\left(x_{i}\right)+\sum_{(i, j) \in E} \sum_{x_{i}, x_{j}} \tau_{i j}\left(x_{i}, x_{j}\right) \log \psi_{i j}\left(x_{i}, x_{j}\right)
$$

where the τ 's are required to satisfy certain marginalization conditions

Integer Programming

$$
\max _{\tau} \sum_{i \in V} \sum_{x_{i}} \tau_{i}\left(x_{i}\right) \log \phi_{i}\left(x_{i}\right)+\sum_{(i, j) \in E} \sum_{x_{i}, x_{j}} \tau_{i j}\left(x_{i}, x_{j}\right) \log \psi_{i j}\left(x_{i}, x_{j}\right)
$$

such that

$$
\begin{array}{ll}
\sum_{x_{i}} \tau_{i}\left(x_{i}\right)=1 & \text { For all } i \in V \\
\sum_{x_{j}} \tau_{i j}\left(x_{i}, x_{j}\right)=\tau_{i}\left(x_{i}\right) & \text { For all }(i, j) \in E, x_{i} \\
\tau_{i}\left(x_{i}\right) \in\{0,1\} & \text { For all } i \in V, x_{i} \\
\tau_{i j}\left(x_{i}, x_{j}\right) \in\{0,1\} & \text { For all }(i, j) \in E, x_{i}, x_{j}
\end{array}
$$

Integer Programming

$$
\max _{\tau} \sum_{i \in V} \sum_{x_{i}} \tau_{i}\left(x_{i}\right) \log \phi_{i}\left(x_{i}\right)+\sum_{(i, j) \in E} \sum_{x_{i}, x_{j}} \tau_{i j}\left(x_{i}, x_{j}\right) \log \psi_{i j}\left(x_{i}, x_{j}\right)
$$

such that

These
constraints
define the
vertices of
the marginal
polytope
(set of all
valid
marginal
distributions)

\sum_{x_{j}} \tau_{i j}\left(x_{i}, x_{j}\right)=\tau_{i}\left(x_{i}\right) \& For all(i, j) \in E, x_{i}

\tau_{i}\left(x_{i}\right) \in\{0,1\}

\tau_{i j}\left(x_{i}, x_{j}\right) \in\{0,1\} \& For all i \in V, x_{i}

\& For all(i, j) \in E, x_{i}, x_{j}\end{cases}\)

Marginal Polytope

- Given an assignment to all of the random variables, x^{*}, can construct τ in the marginal polytope so that the value of the objective function is $\log p\left(x^{*}\right)$
- Set $\tau_{i}\left(x_{i}^{*}\right)=1$, and zero otherwise
- Set $\tau_{i j}\left(x_{i}^{*}, x_{j}^{*}\right)=1$, and zero otherwise
- Given a τ in the marginal polytope, can construct an x^{*} such that the value of the objective function at τ is equal to $\log p\left(x^{*}\right)$
- Set $x_{i}^{*}=\underset{\mathrm{x}_{\mathrm{i}}}{\operatorname{argmax}} \tau_{i}\left(x_{i}\right)$

An Example: Independent Sets

- What is the integer programming problem corresponding to the uniform distribution over independent sets of a graph $G=(V, E)$?

$$
p\left(x_{V}\right)=\frac{1}{Z} \prod_{(i, j) \in E} 1_{x_{i}+x_{j} \leq 1}
$$

(worked out on the board)

Linear Relaxation

- The integer program can be relaxed into a linear program by replacing the 0,1 integrality constraints with linear constraints
- This relaxed set of constraints forms the local marginal polytope
- The τ 's no longer correspond to an achievable marginal distribution, so we call them pseudo-marginals
- We call it a relaxation because the constraints have been relaxed: all solutions to the IP are contained as solutions of the LP
- Linear programming problems can be solved in polynomial time!

Linear Relaxation

$$
\max _{\tau} \sum_{i \in V} \sum_{x_{i}} \tau_{i}\left(x_{i}\right) \log \phi_{i}\left(x_{i}\right)+\sum_{(i, j) \in E} \sum_{x_{i}, x_{j}} \tau_{i j}\left(x_{i}, x_{j}\right) \log \psi_{i j}\left(x_{i}, x_{j}\right)
$$

such that

$$
\begin{array}{ll}
\sum_{x_{i}} \tau_{i}\left(x_{i}\right)=1 & \text { For all } i \in V \\
\sum_{x_{j}} \tau_{i j}\left(x_{i}, x_{j}\right)=\tau_{i}\left(x_{i}\right) & \text { For all }(i, j) \in E, x_{i} \\
\tau_{i}\left(x_{i}\right) \in[0,1] & \text { For all } i \in V, x_{i} \\
\tau_{i j}\left(x_{i}, x_{j}\right) \in[0,1] & \text { For all }(i, j) \in E, x_{i}, x_{j}
\end{array}
$$

An Example: Independent Sets

- What is the linear programming problem corresponding to the uniform distribution over independent sets of a graph $G=(V, E)$?

$$
p\left(x_{V}\right)=\frac{1}{Z} \prod_{(i, j) \in E} 1_{x_{i}+x_{j} \leq 1}
$$

- The MAP LP is a relaxation of the integer programming problem
- MAP LP could have a better solution... (example in class)

Tightness of the MAP LP

- When is it that solving the MAP LP (or equivalently, the dual optimization) is the same as solving the integer programming problem?
- We say that there is no gap when this is the case
- The answer can be expressed as a structural property of the graph (beyond the scope of this course)

