

CS 6347

Lecture 8

Variational Bounds

Approximate Marginal Inference

- Last time: approximate MAP inference
 - Reparamaterizations
 - Linear programming over the local marginal polytope
- Approximate marginal inference (e.g., $p(y_i|x)$)
 - Sampling methods (MCMC, etc.)
 - Variational methods (loopy belief propagation, TRW, etc.)

- In order to perform approximate marginal inference, we will try to find distributions that approximate the true distribution
 - Ideally, the marginals of the approximating distribution should be easy to compute
- For this, we need a notion of closeness of distributions

$$D(p||q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)}$$

- Called the Kullback-Leibler divergence
- $D(p||q) \ge 0$ with equality if and only if p = q
- Not symmetric, $D(p||q) \neq D(q||p)$

Jensen's Inequality

• Let f(x) be a convex function and $a_i \ge 0$ such that $\sum_i a_i = 1$

$$\sum_{i} a_{i} f(x_{i}) \ge f\left(\sum_{i} a_{i} x_{i}\right)$$

- Useful inequality when dealing with convex/concave functions
- When does equality hold?

$$D(p||q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)}$$

- Suppose that we want to approximate the distribution *p* with some other distribution *q* in some family of distributions *Q*
- Could minimize KL divergence in one of two ways
 - $-\arg\min_{q\in Q} D(p||q)$
 - $-\arg\min_{q\in Q}D(q||p)$

$$D(p||q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)}$$

- Suppose that we want to approximate the distribution *p* with some other distribution *q* in some family of distributions *Q*
- Could minimize KL divergence in one of two ways
 - $\arg\min_{q \in Q} D(p||q)$ Called the M-projection
 - $\arg\min_{q \in Q} D(q||p)$

Called the I-projection

$$D(p||q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)}$$

- Suppose that we want to approximate the distribution *p* with some other distribution *q* in some family of distributions *Q*
- Could minimize KL divergence in one of two ways
 - $\arg \min_{q \in Q} D(p||q)$ As hard as the original inference problem
 - $\arg \min_{q \in Q} D(q||p)$ Potentially easier...

• Let's let $p(x) = \frac{1}{Z} \prod_{c} \psi_{c}(x_{c})$ be the distribution that we want to approximate with distribution q

$$D(q||p) = \sum_{x} q(x) \log \frac{q(x)}{p(x)}$$

= $\sum_{x} q(x) \log q(x) - \sum_{x} q(x) \log p(x)$
= $-H(q) - \sum_{x} q(x) \log p(x)$
= $-H(q) + \log Z - \sum_{x} \sum_{C} q(x) \log \psi_{c}(x_{c})$
= $-H(q) + \log Z - \sum_{C} \sum_{x_{C}} q_{C}(x_{C}) \log \psi_{c}(x_{c})$

• Let's let $p(x) = \frac{1}{Z} \prod_{c} \psi_{c}(x_{c})$ be the distribution that we want to approximate with distribution q

$$D(q||p) = \sum_{x} q(x) \log \frac{q(x)}{p(x)}$$

= $\sum_{x} q(x) \log q(x) - \sum_{x} q(x) \log p(x)$
= $-H(q) - \sum_{x} q(x) \log p(x)$
= $-H(q) + \log Z - \sum_{x} \sum_{c} q(x) \log \psi_{c}(x_{c})$ Where have we seen this before?
= $-H(q) + \log Z - \sum_{c} \sum_{x_{c}} q_{c}(x_{c}) \log \psi_{c}(x_{c})$

MAP Integer Program

$$\max_{\tau} \sum_{i \in V} \sum_{x_i} \tau_i(x_i) \log \phi_i(x_i) + \sum_{(i,j) \in E} \sum_{x_i, x_j} \tau_{ij}(x_i, x_j) \log \psi_{ij}(x_i, x_j)$$

such that

$$\sum_{x_i} \tau_i(x_i) = 1$$
For all $i \in V$

$$\sum_{x_j} \tau_{ij}(x_i, x_j) = \tau_i(x_i)$$
For all $(i, j) \in E, x_i$

$$\tau_i(x_i) \in \{0, 1\}$$
For all $i \in V, x_i$

$$\tau_{ij}(x_i, x_j) \in \{0, 1\}$$
For all $(i, j) \in E, x_i, x_j$

 E, x_i

• Let's let $p(x) = \frac{1}{Z} \prod_{c} \psi_{c}(x_{c})$ be the distribution that we want to approximate with distribution q

$$D(q||p) = -H(q) + \log Z - \sum_{C} \sum_{x_{C}} q_{C}(x_{C}) \log \psi_{C}(x_{C})$$

• Using the observation that the KL divergence is non-negative

$$\log Z \ge H(q) + \sum_{C} \sum_{x_{C}} q_{C}(x_{C}) \log \psi_{C}(x_{C})$$

• Let's let $p(x) = \frac{1}{Z} \prod_{c} \psi_{c}(x_{c})$ be the distribution that we want to approximate with distribution q

$$D(q||p) = -H(q) + \log Z - \sum_{C} \sum_{x_{C}} q_{C}(x_{C}) \log \psi_{c}(x_{C})$$

• Using the observation that the KL divergence is non-negative

$$\log Z \ge H(q) + \sum_{C} \sum_{x_{C}} q_{C}(x_{C}) \log \psi_{C}(x_{C})$$

– This lower bound holds for any q

• Let's let $p(x) = \frac{1}{Z} \prod_{c} \psi_{c}(x_{c})$ be the distribution that we want to approximate with distribution q

$$D(q||p) = -H(q) + \log Z - \sum_{C} \sum_{x_{C}} q_{C}(x_{C}) \log \psi_{c}(x_{c})$$

Using the observation that the KL divergence is non-negative

$$\log Z \ge H(q) + \sum_{C} \sum_{x_{C}} q_{C}(x_{C}) \log \psi_{C}(x_{C})$$

Maximizing this over q gives equality

$$\log Z \ge H(q) + \sum_{C} \sum_{x_{C}} q_{C}(x_{C}) \log \psi_{C}(x_{C})$$

- The right hand side is a concave function of q
- Despite that, this optimization problem is **hard**! (surprised?)
 - Exponentially many distributions, q(x)We need a more compact way to express them
 - Computing the entropy is non-trivial

$$\log Z \ge H(q) + \sum_{C} \sum_{x_{C}} q_{C}(x_{C}) \log \psi_{C}(x_{C})$$

- Two kinds of methods that are used to deal with these difficulties
 - Mean-field methods: assume that the approximating distribution factorizes as $q(x) \propto \prod_{i \in V} q_i(x_i)$
 - Relaxation based methods: replace hard pieces of the optimization with easier optimization problems
 - Similar to the MAP IP -> MAP LP relaxation

$$\log Z \ge H(q) + \sum_{C} \sum_{x_{C}} q_{C}(x_{C}) \log \psi_{C}(x_{C})$$

- To handle the representation problem, we can use the same LP relaxation trick that we did before
- For each τ in the marginal polytope, we can rewrite the RHS as

$$\log Z \ge H(\tau) + \sum_{C} \sum_{x_{C}} \tau_{C}(x_{C}) \log \psi_{C}(x_{C})$$

$$\log Z \ge H(q) + \sum_{C} \sum_{x_{C}} q_{C}(x_{C}) \log \psi_{C}(x_{C})$$

- To handle the representation problem, we can use the same LP relaxation trick that we did before
- For each τ in the marginal polytope, we can rewrite the RHS as

$$\log Z \ge H(\tau) + \sum_{C} \sum_{x_{C}} \tau_{C}(x_{C}) \log \psi_{C}(x_{C})$$

Maximum entropy over all τ with these marginals

$$\max_{\tau \in \mathcal{M}} H(\tau) + \sum_{C} \sum_{x_{C}} \tau_{C}(x_{C}) \log \psi_{c}(x_{C})$$

- Marginal polytope, *M*, is intractable to optimize over
- Use the local polytope, *T*

$$\sum_{x_{C\setminus i}} \tau_C(x_C) = \tau_i(x_i) \text{ for all } C, i \in V$$
$$\sum_{x_i} \tau_i(x_i) = 1 \text{ for all } i \in V$$

$$\max_{\tau \in \mathbf{T}} H(\tau) + \sum_{C} \sum_{x_{C}} \tau_{C}(x_{C}) \log \psi_{C}(x_{C})$$

- Even with the polytope relaxation, the optimization problem still remains challenging as computing the entropy remains nontrivial
 - We will need to approximate the entropy as well
 - For which distributions is it easy to compute the entropy?

Tree Reparameterization

• On a tree, the joint distribution factorizes in a special way

$$p(x_1, \dots, x_n) = \frac{1}{Z'} \prod_{i \in V} p_i(x_i) \prod_{(i,j) \in E} \frac{p_{ij}(x_i, x_j)}{p_i(x_i) p_j(x_j)}$$

- p_i is the marginal distribution of the i^{th} variable and p_{ij} is the max-marginal distribution for the edge $(i, j) \in E$
- This applies to "clique trees" as well (i.e., when the factor graph is a tree)

Tree Reparameterization

• On a tree, the joint distribution factorizes in a special way

$$p(x_1, \dots, x_n) = \frac{1}{Z'} \prod_{i \in V} p_i(x_i) \prod_C \frac{p_C(x_C)}{\prod_{i \in C} p_i(x_i)}$$

- p_i is the marginal distribution of the i^{th} variable and p_{ij} is the max-marginal distribution for the edge $(i, j) \in E$
- This applies to "clique trees" as well (i.e., when the factor graph is a tree)

Entropy of a Tree

• Given this factorization, we can easily compute the entropy of a tree structured distribution

$$H_{Tree} = -\sum_{i \in V} \sum_{x_i} p_i(x_i) \log p_i(x_i) - \sum_{C} \sum_{x_C} p_C(x_C) \log \frac{p_C(x_C)}{\prod_{i \in C} p_i(x_i)}$$

- This only depends on the marginals
- Use this as an approximation for general distributions!

Bethe Free Energy

• Combining these two approximations gives us the so-called Bethe free energy approximation

$$\max_{\tau \in \mathbf{T}} H_B(\tau) + \sum_C \sum_{x_C} \tau_C(x_C) \log \psi_C(x_C)$$

where

$$H_B(\tau) = -\sum_{i \in \mathbb{V}} \sum_{x_i} \tau_i(x_i) \log \tau_i(x_i) - \sum_C \sum_{x_C} \tau_C(x_C) \log \frac{\tau_C(x_C)}{\prod_{i \in C} \tau_i(x_i)}$$

Bethe Free Energy

$$\max_{\tau \in \mathbf{T}} H_B(\tau) + \sum_C \sum_{x_C} \tau_C(x_C) \log \psi_C(x_C)$$

- This is not a concave optimization problem for general graphs
 - It is still difficult to maximize
 - Fixed points of loopy belief propagation correspond to saddle points of this objective over the local marginal polytope

