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Lecture 10

MCMC Sampling Methods



Last Time

• Sampling from discrete univariate distributions

• Rejection sampling

• To sample 𝑝𝑝(𝑦𝑦), draw samples from 𝑝𝑝(𝑥𝑥𝑥,𝑦𝑦𝑥) and reject 
those with 𝑦𝑦 ≠ 𝑦𝑦𝑥

• Importance sampling

• Introduce a proposal distribution 𝑞𝑞(𝑥𝑥) whose support 
contains the support of 𝑝𝑝(𝑥𝑥,𝑦𝑦)

• Sample from 𝑞𝑞 and reweight the samples to generate 
samples from 𝑝𝑝
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Today

• We saw how to sample from Bayesian networks, but how do 
we sample from MRFs?

• Can’t even compute 𝑝𝑝 𝑥𝑥 = 1
𝑍𝑍
∏𝑐𝑐∈𝐶𝐶 𝜓𝜓𝑐𝑐(𝑥𝑥𝑐𝑐) without 

knowing the partition function

• No well-defined ordering in the model

• To sample from MRFs, we will need fancier forms of sampling

• So-called Markov Chain Monte Carlo (MCMC) methods
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Markov Chains

• A Markov chain is a sequence of random variables 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 ∈
𝑆𝑆 such that

𝑝𝑝 𝑥𝑥𝑛𝑛+1 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 = 𝑝𝑝 𝑥𝑥𝑛𝑛+1 𝑥𝑥𝑛𝑛

• The set 𝑆𝑆 is called the state space, and 𝑝𝑝 𝑋𝑋𝑛𝑛+1 = 𝑏𝑏 𝑋𝑋𝑛𝑛 = 𝑎𝑎
is the probability of transitioning from state 𝑎𝑎 to state 𝑏𝑏 at 
step 𝑛𝑛

• As a Bayesian network or a MRF, the joint distribution over 
the first 𝑛𝑛 steps factorizes over a chain
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Markov Chains

• When the probability of transitioning between two states 
does not depend on time, we call it a time homogeneous 
Markov chain

• Represent it by a 𝑆𝑆 × |𝑆𝑆| transition matrix 𝑃𝑃

• 𝑃𝑃𝑖𝑖𝑖𝑖 = 𝑝𝑝(𝑋𝑋𝑛𝑛+1 = 𝑗𝑗|𝑋𝑋𝑛𝑛 = 𝑖𝑖)

• 𝑃𝑃 is a stochastic matrix (all rows sum to one)

• Draw it as a directed graph over the state space with an 
arrow from 𝑎𝑎 ∈ 𝑆𝑆 to 𝑏𝑏 ∈ 𝑆𝑆 labelled by the probability of 
transitioning from 𝑎𝑎 to 𝑏𝑏
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Markov Chains

• Given some initial distribution over states 𝑝𝑝(𝑥𝑥1)

• Represent 𝑝𝑝(𝑥𝑥1) as a length |𝑆𝑆| vector, 𝜋𝜋1

• The probability distribution after 𝑛𝑛 steps is given by

𝜋𝜋𝑛𝑛 = 𝜋𝜋1𝑃𝑃𝑛𝑛

• Typically interested in the long term (i.e., what is the state of 
the system when 𝑛𝑛 is large)

• In particular, we are interested in steady-state distributions 𝜇𝜇
such that 𝜇𝜇 = 𝜇𝜇𝑃𝑃

• A given chain may or may not converge to a steady state
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Markov Chains

• Theorem:  every irreducible, aperiodic Markov chain 
converges to a unique steady state distribution independent 
of the initial distribution

• Irreducible:  the directed graph of transitions is strongly 
connected (i.e., there is a directed path between every 
pair of nodes)

• Aperiodic:  𝑝𝑝 𝑋𝑋𝑛𝑛 = 𝑖𝑖 𝑋𝑋1 = 𝑖𝑖) > 0 for all large enough 𝑛𝑛

• If the state graph is strongly connected and there is a non-
zero probability of remaining in any state, then the chain is 
irreducible and aperiodic
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Detailed Balance

• Lemma:  a vector of probabilities 𝜇𝜇 is a stationary distribution 
of the MC with transition matrix 𝑃𝑃 if for all 𝑖𝑖 and 𝑗𝑗,

𝜇𝜇𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖

Proof:

𝜇𝜇𝑃𝑃 𝑖𝑖 = �
𝑖𝑖

𝜇𝜇𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖 = �
𝑖𝑖

𝜇𝜇𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑖𝑖

So, 𝜇𝜇𝑃𝑃 = 𝜇𝜇
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MCMC Sampling

• Markov chain Monte Carlo sampling

• Construct a Markov chain where the stationary distribution 
is the distribution we want to sample from

• Use the Markov chain to generate samples from the 
distribution

• Combine with the same Monte Carlo estimation strategy 
as before

• Will let us sample conditional distributions easily as well!
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Gibbs Sampling

• Choose an initial assignment 𝑥𝑥0

• Fix an ordering of the variables (any order is fine)

• For each 𝑗𝑗 ∈ 𝑉𝑉 in order

• Draw a sample 𝑧𝑧 from 𝑝𝑝(𝑥𝑥𝑖𝑖|𝑥𝑥1𝑡𝑡+1, … , 𝑥𝑥𝑖𝑖−1𝑡𝑡+1, 𝑥𝑥𝑖𝑖+1𝑡𝑡 , … , 𝑥𝑥 𝑉𝑉
𝑡𝑡 )

• Set 𝑥𝑥𝑖𝑖𝑡𝑡+1 = 𝑧𝑧

• Set 𝑡𝑡 ← 𝑡𝑡 + 1 and repeat
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Gibbs Sampling

• If 𝑝𝑝 𝑥𝑥 = 1
𝑍𝑍
∏𝐶𝐶 𝜓𝜓𝐶𝐶(𝑥𝑥𝐶𝐶), we can use the conditional 

independence assumptions to sample from 𝑝𝑝(𝑥𝑥𝑖𝑖|𝑥𝑥𝑁𝑁 𝑖𝑖 )

• This lets us exploit the graph structure for sampling

• For Bayesian networks, reduces to 𝑝𝑝(𝑋𝑋𝑖𝑖|𝑥𝑥𝑀𝑀𝑀𝑀 𝑖𝑖 ) where 
𝑀𝑀𝑀𝑀(𝑗𝑗) is 𝑗𝑗’s Markov blanket (𝑗𝑗’s parents, children, and its 
children's parents)
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Gibbs Sampling

12

A B

C

D

𝐴𝐴 𝑃𝑃(𝐴𝐴)
0 .3
1 .7

𝑀𝑀 𝑃𝑃(𝑀𝑀)
0 .4
1 .6

𝐴𝐴 𝑀𝑀 𝐶𝐶 𝑃𝑃(𝐶𝐶|𝐴𝐴,𝑀𝑀)
0 0 0 .1
0 0 1 .9
0 1 0 .2
0 1 1 .8
1 0 0 .01
1 0 1 .99
1 1 0 .25
1 1 1 .75

𝐶𝐶 𝐷𝐷 𝑃𝑃(𝐷𝐷|𝐶𝐶)
0 0 .3
0 1 .7
1 0 .4
1 1 .6

A B C D

0 0 0 0

(1) Sample from 𝑝𝑝 𝑥𝑥𝐴𝐴 𝑥𝑥𝑀𝑀 = 0, 𝑥𝑥𝐶𝐶 = 0, 𝑥𝑥𝐷𝐷 = 0
Using Bayes rule, 𝑝𝑝 𝑥𝑥𝐴𝐴 𝑥𝑥𝑀𝑀 = 0, 𝑥𝑥𝐶𝐶 = 0 ∝ 𝑝𝑝 𝑥𝑥𝐴𝐴 𝑝𝑝 𝑥𝑥𝐶𝐶 = 0 𝑥𝑥𝐴𝐴, 𝑥𝑥𝑀𝑀 = 0
𝑝𝑝 𝑥𝑥𝐴𝐴 = 0 𝑥𝑥𝑀𝑀 = 0, 𝑥𝑥𝐶𝐶 = 0 ∝ .3 ⋅ .1 = .03
𝑝𝑝 𝑥𝑥𝐴𝐴 = 1 𝑥𝑥𝑀𝑀 = 0, 𝑥𝑥𝐶𝐶 = 0 ∝ .7 ⋅ .01 = .007

Order: A, B, C, D, A, B, C, D, …



Gibbs Sampling
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A B

C

D

𝐴𝐴 𝑃𝑃(𝐴𝐴)
0 .3
1 .7

𝑀𝑀 𝑃𝑃(𝑀𝑀)
0 .4
1 .6

𝐴𝐴 𝑀𝑀 𝐶𝐶 𝑃𝑃(𝐶𝐶|𝐴𝐴,𝑀𝑀)
0 0 0 .1
0 0 1 .9
0 1 0 .2
0 1 1 .8
1 0 0 .01
1 0 1 .99
1 1 0 .25
1 1 1 .75

𝐶𝐶 𝐷𝐷 𝑃𝑃(𝐷𝐷|𝐶𝐶)
0 0 .3
0 1 .7
1 0 .4
1 1 .6

A B C D

0 0 0 0

0

(1) Sample from 𝑝𝑝 𝑥𝑥𝐴𝐴 𝑥𝑥𝑀𝑀 = 0, 𝑥𝑥𝐶𝐶 = 0, 𝑥𝑥𝐷𝐷 = 0
Using Bayes rule, 𝑝𝑝 𝑥𝑥𝐴𝐴 𝑥𝑥𝑀𝑀 = 0, 𝑥𝑥𝐶𝐶 = 0 ∝ 𝑝𝑝 𝑥𝑥𝐴𝐴 𝑝𝑝 𝑥𝑥𝐶𝐶 = 0 𝑥𝑥𝐴𝐴, 𝑥𝑥𝑀𝑀 = 0
𝑝𝑝 𝑥𝑥𝐴𝐴 = 0 𝑥𝑥𝑀𝑀 = 0, 𝑥𝑥𝐶𝐶 = 0 ∝ .3 ⋅ .1 → .811
𝑝𝑝 𝑥𝑥𝐴𝐴 = 1 𝑥𝑥𝑀𝑀 = 0, 𝑥𝑥𝐶𝐶 = 0 ∝ .7 ⋅ .01 → .189

Order: A, B, C, D, A, B, C, D, …

Random number: 0.32775



Gibbs Sampling
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A B

C

D

𝐴𝐴 𝑃𝑃(𝐴𝐴)
0 .3
1 .7

𝑀𝑀 𝑃𝑃(𝑀𝑀)
0 .4
1 .6

𝐴𝐴 𝑀𝑀 𝐶𝐶 𝑃𝑃(𝐶𝐶|𝐴𝐴,𝑀𝑀)
0 0 0 .1
0 0 1 .9
0 1 0 .2
0 1 1 .8
1 0 0 .01
1 0 1 .99
1 1 0 .25
1 1 1 .75

𝐶𝐶 𝐷𝐷 𝑃𝑃(𝐷𝐷|𝐶𝐶)
0 0 .3
0 1 .7
1 0 .4
1 1 .6

A B C D

0 0 0 0

0

(1) Sample from 𝑝𝑝 𝑥𝑥𝑀𝑀 𝑥𝑥𝐴𝐴 = 0, 𝑥𝑥𝐶𝐶 = 0, 𝑥𝑥𝐷𝐷 = 0
Using Bayes rule, 𝑝𝑝 𝑥𝑥𝑀𝑀 𝑥𝑥𝐴𝐴 = 0, 𝑥𝑥𝐶𝐶 = 0 ∝ 𝑝𝑝 𝑥𝑥𝑀𝑀 𝑝𝑝 𝑥𝑥𝐶𝐶 = 0 𝑥𝑥𝐴𝐴 = 0, 𝑥𝑥𝑀𝑀
𝑝𝑝 𝑥𝑥𝑀𝑀 = 0 𝑥𝑥𝐴𝐴 = 0, 𝑥𝑥𝐶𝐶 = 0 ∝ .4 ⋅ .1 = .04
𝑝𝑝 𝑥𝑥𝑀𝑀 = 1 𝑥𝑥𝐴𝐴 = 0, 𝑥𝑥𝐶𝐶 = 0 ∝ .6 ⋅ .2 = .12

Order: A, B, C, D, A, B, C, D, …



Gibbs Sampling
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A B

C

D

𝐴𝐴 𝑃𝑃(𝐴𝐴)
0 .3
1 .7

𝑀𝑀 𝑃𝑃(𝑀𝑀)
0 .4
1 .6

𝐴𝐴 𝑀𝑀 𝐶𝐶 𝑃𝑃(𝐶𝐶|𝐴𝐴,𝑀𝑀)
0 0 0 .1
0 0 1 .9
0 1 0 .2
0 1 1 .8
1 0 0 .01
1 0 1 .99
1 1 0 .25
1 1 1 .75

𝐶𝐶 𝐷𝐷 𝑃𝑃(𝐷𝐷|𝐶𝐶)
0 0 .3
0 1 .7
1 0 .4
1 1 .6

A B C D

0 0 0 0

0 1

(1) Sample from 𝑝𝑝 𝑥𝑥𝑀𝑀 𝑥𝑥𝐴𝐴 = 0, 𝑥𝑥𝐶𝐶 = 0, 𝑥𝑥𝐷𝐷 = 0
Using Bayes rule, 𝑝𝑝 𝑥𝑥𝑀𝑀 𝑥𝑥𝐴𝐴 = 0, 𝑥𝑥𝐶𝐶 = 0 ∝ 𝑝𝑝 𝑥𝑥𝑀𝑀 𝑝𝑝 𝑥𝑥𝐶𝐶 = 0 𝑥𝑥𝐴𝐴 = 0, 𝑥𝑥𝑀𝑀
𝑝𝑝 𝑥𝑥𝑀𝑀 = 0 𝑥𝑥𝐴𝐴 = 0, 𝑥𝑥𝐶𝐶 = 0 ∝ .4 ⋅ .1 → .25
𝑝𝑝 𝑥𝑥𝑀𝑀 = 1 𝑥𝑥𝐴𝐴 = 0, 𝑥𝑥𝐶𝐶 = 0 ∝ .6 ⋅ .2 → .75

Order: A, B, C, D, A, B, C, D, …

Random number: 0.8378



Gibbs Sampling
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A B

C

D

𝐴𝐴 𝑃𝑃(𝐴𝐴)
0 .3
1 .7

𝑀𝑀 𝑃𝑃(𝑀𝑀)
0 .4
1 .6

𝐴𝐴 𝑀𝑀 𝐶𝐶 𝑃𝑃(𝐶𝐶|𝐴𝐴,𝑀𝑀)
0 0 0 .1
0 0 1 .9
0 1 0 .2
0 1 1 .8
1 0 0 .01
1 0 1 .99
1 1 0 .25
1 1 1 .75

𝐶𝐶 𝐷𝐷 𝑃𝑃(𝐷𝐷|𝐶𝐶)
0 0 .3
0 1 .7
1 0 .4
1 1 .6

A B C D

0 0 0 0

0 1

(1) Sample from 𝑝𝑝 𝑥𝑥𝐶𝐶 𝑥𝑥𝐴𝐴 = 0, 𝑥𝑥𝑀𝑀 = 1, 𝑥𝑥𝐷𝐷 = 0
Using Bayes rule, 𝑝𝑝 𝑥𝑥𝐶𝐶 𝑥𝑥𝐴𝐴 = 0, 𝑥𝑥𝑀𝑀 = 1, 𝑥𝑥𝐷𝐷 = 0 ∝ 𝑝𝑝 𝑥𝑥𝐶𝐶|𝑥𝑥𝐴𝐴 = 0, 𝑥𝑥𝑀𝑀 = 1 𝑝𝑝 𝑥𝑥𝐷𝐷 = 0 𝑥𝑥𝐶𝐶
𝑝𝑝 𝑥𝑥𝐶𝐶 = 0 𝑥𝑥𝐴𝐴 = 0, 𝑥𝑥𝑀𝑀 = 1, 𝑥𝑥𝐷𝐷 = 0 ∝ .2 ⋅ .3 = .06
𝑝𝑝 𝑥𝑥𝐶𝐶 = 1 𝑥𝑥𝐴𝐴 = 0, 𝑥𝑥𝑀𝑀 = 1, 𝑥𝑥𝐷𝐷 = 0 ∝ .8 ⋅ .4 = .32

Order: A, B, C, D, A, B, C, D, …



Gibbs Sampling
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A B

C

D

𝐴𝐴 𝑃𝑃(𝐴𝐴)
0 .3
1 .7

𝑀𝑀 𝑃𝑃(𝑀𝑀)
0 .4
1 .6

𝐴𝐴 𝑀𝑀 𝐶𝐶 𝑃𝑃(𝐶𝐶|𝐴𝐴,𝑀𝑀)
0 0 0 .1
0 0 1 .9
0 1 0 .2
0 1 1 .8
1 0 0 .01
1 0 1 .99
1 1 0 .25
1 1 1 .75

𝐶𝐶 𝐷𝐷 𝑃𝑃(𝐷𝐷|𝐶𝐶)
0 0 .3
0 1 .7
1 0 .4
1 1 .6

A B C D

0 0 0 0

0 1 1

(1) Sample from 𝑝𝑝 𝑥𝑥𝐶𝐶 𝑥𝑥𝐴𝐴 = 0, 𝑥𝑥𝑀𝑀 = 1, 𝑥𝑥𝐷𝐷 = 0
Using Bayes rule, 𝑝𝑝 𝑥𝑥𝐶𝐶 𝑥𝑥𝐴𝐴 = 0, 𝑥𝑥𝑀𝑀 = 1, 𝑥𝑥𝐷𝐷 = 0 ∝ 𝑝𝑝 𝑥𝑥𝐶𝐶|𝑥𝑥𝐴𝐴 = 0, 𝑥𝑥𝑀𝑀 = 1 𝑝𝑝 𝑥𝑥𝐷𝐷 = 0 𝑥𝑥𝐶𝐶
𝑝𝑝 𝑥𝑥𝐶𝐶 = 0 𝑥𝑥𝐴𝐴 = 0, 𝑥𝑥𝑀𝑀 = 1, 𝑥𝑥𝐷𝐷 = 0 ∝ .2 ⋅ .3 → .158
𝑝𝑝 𝑥𝑥𝐶𝐶 = 1 𝑥𝑥𝐴𝐴 = 0, 𝑥𝑥𝑀𝑀 = 1, 𝑥𝑥𝐷𝐷 = 0 ∝ .8 ⋅ .4 → .842

Order: A, B, C, D, A, B, C, D, …

Random number: 0.73907



Gibbs Sampling
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A B

C

D

𝐴𝐴 𝑃𝑃(𝐴𝐴)
0 .3
1 .7

𝑀𝑀 𝑃𝑃(𝑀𝑀)
0 .4
1 .6

𝐴𝐴 𝑀𝑀 𝐶𝐶 𝑃𝑃(𝐶𝐶|𝐴𝐴,𝑀𝑀)
0 0 0 .1
0 0 1 .9
0 1 0 .2
0 1 1 .8
1 0 0 .01
1 0 1 .99
1 1 0 .25
1 1 1 .75

𝐶𝐶 𝐷𝐷 𝑃𝑃(𝐷𝐷|𝐶𝐶)
0 0 .3
0 1 .7
1 0 .4
1 1 .6

A B C D

0 0 0 0

0 1 1

(1) Sample from 𝑝𝑝 𝑥𝑥𝐷𝐷 𝑥𝑥𝐶𝐶 = 1
𝑝𝑝 𝑥𝑥𝐷𝐷 = 0 𝑥𝑥𝐶𝐶 = 1 = .4
𝑝𝑝 𝑥𝑥𝐷𝐷 = 1 𝑥𝑥𝐶𝐶 = 1 = .6

Order: A, B, C, D, A, B, C, D, …



Gibbs Sampling
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A B

C

D

𝐴𝐴 𝑃𝑃(𝐴𝐴)
0 .3
1 .7

𝑀𝑀 𝑃𝑃(𝑀𝑀)
0 .4
1 .6

𝐴𝐴 𝑀𝑀 𝐶𝐶 𝑃𝑃(𝐶𝐶|𝐴𝐴,𝑀𝑀)
0 0 0 .1
0 0 1 .9
0 1 0 .2
0 1 1 .8
1 0 0 .01
1 0 1 .99
1 1 0 .25
1 1 1 .75

𝐶𝐶 𝐷𝐷 𝑃𝑃(𝐷𝐷|𝐶𝐶)
0 0 .3
0 1 .7
1 0 .4
1 1 .6

A B C D

0 0 0 0

0 1 1 0

(1) Sample from 𝑝𝑝 𝑥𝑥𝐷𝐷 𝑥𝑥𝐶𝐶 = 1
𝑝𝑝 𝑥𝑥𝐷𝐷 = 0 𝑥𝑥𝐶𝐶 = 1 = .4
𝑝𝑝 𝑥𝑥𝐷𝐷 = 1 𝑥𝑥𝐶𝐶 = 1 = .6

Order: A, B, C, D, A, B, C, D, …

Random number: 0.03192



Gibbs Sampling
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A B

C

D

𝐴𝐴 𝑃𝑃(𝐴𝐴)
0 .3
1 .7

𝑀𝑀 𝑃𝑃(𝑀𝑀)
0 .4
1 .6

𝐴𝐴 𝑀𝑀 𝐶𝐶 𝑃𝑃(𝐶𝐶|𝐴𝐴,𝑀𝑀)
0 0 0 .1
0 0 1 .9
0 1 0 .2
0 1 1 .8
1 0 0 .01
1 0 1 .99
1 1 0 .25
1 1 1 .75

𝐶𝐶 𝐷𝐷 𝑃𝑃(𝐷𝐷|𝐶𝐶)
0 0 .3
0 1 .7
1 0 .4
1 1 .6

A B C D

0 0 0 0

0 1 1 0

(2) Repeat the same process to generate the next sample

Order: A, B, C, D, A, B, C, D, …



Gibbs Sampling

• Gibbs sampling forms a Markov chain

• The states of the chain are the assignments and the 
probability of transitioning from an assignment 𝑦𝑦 to an 
assignment 𝑧𝑧 (in the order 1, … ,𝑛𝑛)

𝑝𝑝 𝑧𝑧1 𝑦𝑦𝑉𝑉∖ 1 𝑝𝑝 𝑧𝑧2 𝑦𝑦𝑉𝑉∖ 1,2 , 𝑧𝑧1 …𝑝𝑝(𝑧𝑧𝑛𝑛|𝑧𝑧𝑉𝑉∖{𝑛𝑛})

• If there are no zero probability states, then the chain is 
irreducible and aperiodic (hence it converges)

• The stationary distribution is 𝑝𝑝(𝑥𝑥) – proof?
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Gibbs Sampling

• Recall that it takes time to reach the steady state distribution 
from an arbitrary starting distribution

• The mixing time is the number of samples that it takes before 
the approximate distribution is close to the steady state 
distribution

• In practice, this can take 1000s of iterations (or more)

• We typically ignore the samples for a set amount of time 
called the burn in phase and then begin producing 
samples
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Gibbs Sampling

• We can use Gibbs sampling for MRFs as well!

• We don’t need to compute the partition function to use it 
(why not?)

• Many “real” MRFs will have lots of zero probability 
assignments 

• If you don’t start with a non-zero assignment, the 
algorithm can get stuck (changing a single variable may 
not allow you to escape)

• Might not be possible to go between all possible non-
zero assignments by only flipping one variable at a time
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Metropolis-Hastings Algorithm

• The idea of choosing a transition probability between new 
assignments and the current assignments can be generalized 
beyond the transition probabilities used in Gibbs sampling

• Pick some transition function 𝑞𝑞(𝑥𝑥𝑥|𝑥𝑥) that depends on the 
current state 𝑥𝑥

• We would ideally want the probability of transitioning 
between any two non-zero probability states to be positive
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Metropolis-Hastings Algorithm

• Choose an initial assignment 𝑥𝑥

• Sample an assignment 𝑧𝑧 from the proposal distribution 
𝑞𝑞(𝑥𝑥′|𝑥𝑥)

• Sample 𝑟𝑟 uniformly from [0,1]

• If 𝑟𝑟 < min 1, 𝑝𝑝 𝑧𝑧 𝑞𝑞(𝑥𝑥|𝑧𝑧)
𝑝𝑝 𝑥𝑥 𝑞𝑞(𝑧𝑧|𝑥𝑥)

• Set 𝑥𝑥 to 𝑧𝑧

• Else

• Leave 𝑥𝑥 unchanged
25



Metropolis-Hastings Algorithm

• Choose an initial assignment 𝑥𝑥

• Sample an assignment 𝑧𝑧 from the proposal distribution 
𝑞𝑞(𝑥𝑥′|𝑥𝑥)

• Sample 𝑟𝑟 uniformly from [0,1]

• If 𝑟𝑟 < min 1, 𝑝𝑝 𝑧𝑧 𝑞𝑞(𝑥𝑥|𝑧𝑧)
𝑝𝑝 𝑥𝑥 𝑞𝑞(𝑧𝑧|𝑥𝑥)

• Set 𝑥𝑥 to 𝑧𝑧

• Else

• Leave 𝑥𝑥 unchanged
26

𝑝𝑝 𝑧𝑧
𝑞𝑞 𝑧𝑧|𝑥𝑥

and 𝑝𝑝 𝑥𝑥
𝑞𝑞 𝑥𝑥|𝑧𝑧

are like 

importance weights

The acceptance probability is 
then a function of the ratio of the 
importance of 𝑧𝑧 and the 
importance of 𝑥𝑥



Metropolis-Hastings Algorithm

• The Metropolis-Hastings algorithm produces a Markov chain 
that converges to 𝑝𝑝(𝑥𝑥) from any initial distribution (assuming 
that it is irreducible and aperiodic)

• What are some choices for 𝑞𝑞(𝑥𝑥′|𝑥𝑥)?

• Use an importance sampling distribution

• Use a uniform distribution (like a random walk)

• Gibbs sampling is a special case of this algorithm where the 
proposal distribution corresponds to the transition matrix
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