
CS 6347

Lecture 12

Maximum Likelihood Learning



Maximum Likelihood Estimation

• Given samples 𝑥𝑥1, … , 𝑥𝑥𝑀𝑀 from some unknown distribution 
with parameters 𝜃𝜃…

• The log-likelihood of the evidence is defined to be 

log 𝑙𝑙 𝜃𝜃 = �
𝑚𝑚

log𝑝𝑝(𝑥𝑥|𝜃𝜃)

• Goal:  maximize the log-likelihood
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MLE for Bayesian Networks

• Given samples 𝑥𝑥1, … , 𝑥𝑥𝑀𝑀 from some unknown Bayesian 
network that factors over the directed acyclic graph 𝐺𝐺

• The parameters of a Bayesian model are simply the 
conditional probabilities that define the factorization

• For each 𝑖𝑖 ∈ 𝐺𝐺 we need to learn 𝑝𝑝(𝑥𝑥𝑖𝑖|𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖 ), create a 
variable 𝜃𝜃𝑥𝑥𝑖𝑖|𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖)

log 𝑙𝑙 𝜃𝜃 = �
𝑚𝑚

�
𝑖𝑖∈𝑉𝑉

log 𝜃𝜃𝑥𝑥𝑖𝑖𝑚𝑚|𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖)
𝑚𝑚

3



MLE for Bayesian Networks

log 𝑙𝑙 𝜃𝜃 = �
𝑚𝑚

�
𝑖𝑖∈𝑉𝑉

log 𝜃𝜃𝑥𝑥𝑖𝑖𝑚𝑚|𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖)
𝑚𝑚

= �
𝑖𝑖∈𝑉𝑉

�
𝑚𝑚

log 𝜃𝜃𝑥𝑥𝑖𝑖𝑚𝑚|𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖)
𝑚𝑚

= �
𝑖𝑖∈𝑉𝑉

�
𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖

�
𝑥𝑥𝑖𝑖

N𝑥𝑥i,𝑥𝑥parents(i)log𝜃𝜃𝑥𝑥𝑖𝑖|𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖
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MLE for Bayesian Networks

log 𝑙𝑙 𝜃𝜃 = �
𝑚𝑚

�
𝑖𝑖∈𝑉𝑉

log 𝜃𝜃𝑥𝑥𝑖𝑖𝑚𝑚|𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖)
𝑚𝑚

= �
𝑖𝑖∈𝑉𝑉

�
𝑚𝑚

log 𝜃𝜃𝑥𝑥𝑖𝑖𝑚𝑚|𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖)
𝑚𝑚

= �
𝑖𝑖∈𝑉𝑉

�
𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖

�
𝑥𝑥𝑖𝑖

N𝑥𝑥i,𝑥𝑥parents(i)log𝜃𝜃𝑥𝑥𝑖𝑖|𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖

5

𝑁𝑁𝑥𝑥𝑖𝑖,𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖 is the number of times 
(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖 ) was observed in the samples



MLE for Bayesian Networks

log 𝑙𝑙 𝜃𝜃 = �
𝑚𝑚

�
𝑖𝑖∈𝑉𝑉

log 𝜃𝜃𝑥𝑥𝑖𝑖𝑚𝑚|𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖)
𝑚𝑚

= �
𝑖𝑖∈𝑉𝑉

�
𝑚𝑚

log 𝜃𝜃𝑥𝑥𝑖𝑖𝑚𝑚|𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖)
𝑚𝑚

= �
𝑖𝑖∈𝑉𝑉

�
𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖

�
𝑥𝑥𝑖𝑖

N𝑥𝑥i,𝑥𝑥parents(i)log𝜃𝜃𝑥𝑥𝑖𝑖|𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖

Fix 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖 solve for 𝜃𝜃𝑥𝑥𝑖𝑖|𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖 for all 𝑥𝑥𝑖𝑖
(on the board)
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MLE for Bayesian Networks

𝜃𝜃𝑥𝑥𝑖𝑖|𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖 =
N𝑥𝑥𝑖𝑖,𝑥𝑥parents 𝑖𝑖

∑𝑥𝑥𝑖𝑖′ N𝑥𝑥𝑖𝑖
′,𝑥𝑥parents 𝑖𝑖

=
N𝑥𝑥𝑖𝑖,𝑥𝑥parents 𝑖𝑖

N𝑥𝑥parents 𝑖𝑖

• This is just the empirical conditional probability distribution

• Worked out nicely because of the factorization of the joint 
distribution

• Similar to the coin flips result from last time
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MLE for MRFs

• Let’s compute the MLE for MRFs that factor over the graph 𝐺𝐺
as 𝑝𝑝 𝑥𝑥|𝜃𝜃 = 1

𝑍𝑍(𝜃𝜃)
∏𝐶𝐶 𝜓𝜓𝐶𝐶 𝑥𝑥𝐶𝐶|𝜃𝜃

• The parameters 𝜃𝜃 control the allowable potential functions

• Again, suppose we have samples 𝑥𝑥1, … , 𝑥𝑥𝑀𝑀 from some 
unknown MRF of this form

log 𝑙𝑙 𝜃𝜃 = �
𝑚𝑚

�
𝐶𝐶

log𝜓𝜓𝐶𝐶 𝑥𝑥𝐶𝐶𝑚𝑚 𝜃𝜃 −𝑀𝑀 log𝑍𝑍 (𝜃𝜃)
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MLE for MRFs

• Let’s compute the MLE for MRFs that factor over the graph 𝐺𝐺
as 𝑝𝑝 𝑥𝑥|𝜃𝜃 = 1

𝑍𝑍(𝜃𝜃)
∏𝐶𝐶 𝜓𝜓𝐶𝐶 𝑥𝑥𝐶𝐶|𝜃𝜃

• The parameters 𝜃𝜃 control the allowable potential functions

• Again, suppose we have samples 𝑥𝑥1, … , 𝑥𝑥𝑀𝑀 from some 
unknown MRF of this form

log 𝑙𝑙 𝜃𝜃 = �
𝑚𝑚

�
𝐶𝐶

log𝜓𝜓𝐶𝐶 𝑥𝑥𝐶𝐶𝑚𝑚 𝜃𝜃 −𝑀𝑀 log𝑍𝑍 (𝜃𝜃)

9

𝑍𝑍(𝜃𝜃) couples all of the potential functions together!

Even computing 𝑍𝑍(𝜃𝜃) by itself was a challenging task…



Conditional Random Fields

• Learning MRFs is quite restrictive

• Most “real” problems are really conditional models

• Example:  image segmentation

• Represent a segmentation problem as a MRF over a two 
dimensional grid

• Each 𝑥𝑥𝑖𝑖 is an binary variable indicating whether or not the pixel 
is in the foreground or the background

• How do we incorporate pixel information?

• The potentials over the edge (𝑖𝑖, 𝑗𝑗) of the MRF should 
depend on 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 as well as the pixel information at nodes 𝑖𝑖
and 𝑗𝑗
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Image Segmentation



Feature Vectors

• The pixel information is called a feature of the model

• Features will consist of more than just a scalar value (i.e., pixels, 
at the very least, are vectors of RGBA values)

• Vector of features 𝑦𝑦 (e.g., one vector of features 𝑦𝑦𝑖𝑖 for each 𝑖𝑖 ∈ 𝑉𝑉)

• We think of the joint probability distribution as a conditional 
distribution 𝑝𝑝(𝑥𝑥|𝑦𝑦,𝜃𝜃)

• This makes MLE even harder

• Samples are pairs (𝑥𝑥1,𝑦𝑦1), … , (𝑥𝑥𝑀𝑀,𝑦𝑦𝑀𝑀)

• The feature vectors can be different for each sample: need to 
compute 𝑍𝑍(𝜃𝜃,𝑦𝑦𝑚𝑚) in the log-likelihood!
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Log-Linear Models

• MLE seems daunting for MRFs and CRFs

• Need a nice way to parameterize the model and to deal 
with features

• We often assume that the models are log-linear in the 
parameters

• Many of the models that we have seen so far can easily be 
expressed as log-linear models of the parameters

• Feature vectors should also be incorporated in a log-linear 
way
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Log-Linear Models

• The potential on the clique 𝐶𝐶 should be a log-linear function 
of the parameters

𝜓𝜓𝐶𝐶 𝑥𝑥𝐶𝐶|𝑦𝑦,𝜃𝜃 = exp 𝜃𝜃,𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶 ,𝑦𝑦
where

𝜃𝜃,𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶 ,𝑦𝑦 = �
𝑘𝑘

𝜃𝜃𝑘𝑘 ⋅ 𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶 ,𝑦𝑦 𝑘𝑘

• Here, 𝑓𝑓 is a feature map that takes the input variables and 
returns a vector the same size as 𝜃𝜃
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Log-Linear MRFs

• Over complete representation:  one parameter for each clique 
𝐶𝐶 and choice of 𝑥𝑥𝐶𝐶

𝑝𝑝 𝑥𝑥|𝜃𝜃 =
1
𝑍𝑍�

𝐶𝐶

exp(𝜃𝜃𝐶𝐶(𝑥𝑥𝐶𝐶))

• 𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶 is a 0-1 vector that is indexed by 𝐶𝐶 and 𝑥𝑥𝐶𝐶whose only 
non-zero component corresponds to 𝜃𝜃𝐶𝐶(𝑥𝑥𝐶𝐶)

• One parameter per clique

𝑝𝑝 𝑥𝑥|𝜃𝜃 =
1
𝑍𝑍�

𝐶𝐶

exp( 𝜃𝜃, 𝑓𝑓𝐶𝐶(𝑥𝑥𝐶𝐶) )

• 𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶 is a vector that is indexed ONLY by 𝐶𝐶 whose only non-
zero component corresponds to 𝜃𝜃𝐶𝐶
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MLE for Log-Linear Models

𝑝𝑝 𝑥𝑥 𝑦𝑦,𝜃𝜃 =
1

𝑍𝑍 𝜃𝜃,𝑦𝑦
�
𝐶𝐶

exp 𝜃𝜃,𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶 ,𝑦𝑦

log 𝑙𝑙 𝜃𝜃 = �
𝑚𝑚

�
𝐶𝐶

𝜃𝜃,𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶𝑚𝑚,𝑦𝑦𝑚𝑚 − log𝑍𝑍(𝜃𝜃,𝑦𝑦𝑚𝑚)

= 𝜃𝜃,�
𝑚𝑚

�
𝐶𝐶

𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶𝑚𝑚,𝑦𝑦𝑚𝑚 −�
𝑚𝑚

log𝑍𝑍(𝜃𝜃,𝑦𝑦𝑚𝑚)
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MLE for Log-Linear Models

𝑝𝑝 𝑥𝑥 𝑦𝑦,𝜃𝜃 =
1

𝑍𝑍 𝜃𝜃,𝑦𝑦
�
𝐶𝐶

exp 𝜃𝜃,𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶 ,𝑦𝑦

log 𝑙𝑙 𝜃𝜃 = �
𝑚𝑚

�
𝐶𝐶

𝜃𝜃,𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶𝑚𝑚,𝑦𝑦𝑚𝑚 − log𝑍𝑍(𝜃𝜃,𝑦𝑦𝑚𝑚)

= 𝜃𝜃,�
𝑚𝑚

�
𝐶𝐶

𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶𝑚𝑚,𝑦𝑦𝑚𝑚 −�
𝑚𝑚

log𝑍𝑍(𝜃𝜃,𝑦𝑦𝑚𝑚)
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Linear in 𝜃𝜃 Depends non-linearly 
on 𝜃𝜃



Concavity of MLE
We will show that log𝑍𝑍(𝜃𝜃,𝑦𝑦) is a convex function of 𝜃𝜃…

Fix a distribution 𝑞𝑞(x|y)

𝐷𝐷(𝑞𝑞| 𝑝𝑝 = �
𝑥𝑥

𝑞𝑞 𝑥𝑥|𝑦𝑦 log
𝑞𝑞 𝑥𝑥|𝑦𝑦
𝑝𝑝 𝑥𝑥|𝑦𝑦,𝜃𝜃

= �
𝑥𝑥

𝑞𝑞 𝑥𝑥|𝑦𝑦 log 𝑞𝑞(𝑥𝑥|𝑦𝑦) −�
𝑥𝑥

𝑞𝑞 𝑥𝑥|𝑦𝑦 log 𝑝𝑝 𝑥𝑥|𝑦𝑦,𝜃𝜃

= −𝐻𝐻(𝑞𝑞) −�
𝑥𝑥

𝑞𝑞 𝑥𝑥|𝑦𝑦 log 𝑝𝑝 𝑥𝑥|𝑦𝑦,𝜃𝜃

= −𝐻𝐻(𝑞𝑞) + log𝑍𝑍(𝜃𝜃,𝑦𝑦) −�
𝑥𝑥

�
𝐶𝐶

𝑞𝑞 𝑥𝑥|𝑦𝑦 𝜃𝜃, 𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶 , 𝑦𝑦

= −𝐻𝐻(𝑞𝑞) + log𝑍𝑍(𝜃𝜃,𝑦𝑦) −�
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝑞𝑞𝐶𝐶 𝑥𝑥𝐶𝐶|𝑦𝑦 𝜃𝜃, 𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶 ,𝑦𝑦

18



Concavity of MLE

log𝑍𝑍(𝜃𝜃,𝑦𝑦) = max
𝑞𝑞

𝐻𝐻(𝑞𝑞) + �
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝑞𝑞𝐶𝐶 𝑥𝑥𝐶𝐶|𝑦𝑦 𝜃𝜃,𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶 ,𝑦𝑦

• If a function 𝑔𝑔(𝑥𝑥,𝑦𝑦) is convex in 𝑥𝑥 for each 𝑦𝑦, then 
max
𝑦𝑦

𝑔𝑔(𝑥𝑥,𝑦𝑦) is convex in 𝑥𝑥

• As a result, log𝑍𝑍(𝜃𝜃,𝑦𝑦) is a convex function of 𝜃𝜃 for a fixed 
value of 𝑦𝑦
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Linear in 𝜃𝜃



MLE for Log-Linear Models

𝑝𝑝 𝑥𝑥 𝑦𝑦,𝜃𝜃 =
1

𝑍𝑍 𝜃𝜃,𝑦𝑦
�
𝐶𝐶

exp 𝜃𝜃,𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶 ,𝑦𝑦

log 𝑙𝑙 𝜃𝜃 = �
𝑚𝑚

�
𝐶𝐶

𝜃𝜃,𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶𝑚𝑚,𝑦𝑦𝑚𝑚 − log𝑍𝑍(𝜃𝜃,𝑦𝑦𝑚𝑚)

= 𝜃𝜃,�
𝑚𝑚

�
𝐶𝐶

𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶𝑚𝑚,𝑦𝑦𝑚𝑚 −�
𝑚𝑚

log𝑍𝑍(𝜃𝜃,𝑦𝑦𝑚𝑚)
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Linear in 𝜃𝜃 Convex in 𝜃𝜃



MLE for Log-Linear Models

𝑝𝑝 𝑥𝑥 𝑦𝑦,𝜃𝜃 =
1

𝑍𝑍 𝜃𝜃,𝑦𝑦
�
𝐶𝐶

exp 𝜃𝜃,𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶 ,𝑦𝑦

log 𝑙𝑙 𝜃𝜃 = �
𝑚𝑚

�
𝐶𝐶

𝜃𝜃,𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶𝑚𝑚,𝑦𝑦𝑚𝑚 − log𝑍𝑍(𝜃𝜃,𝑦𝑦𝑚𝑚)

= 𝜃𝜃,�
𝑚𝑚

�
𝐶𝐶

𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶𝑚𝑚,𝑦𝑦𝑚𝑚 −�
𝑚𝑚

log𝑍𝑍(𝜃𝜃,𝑦𝑦𝑚𝑚)
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Concave in 𝜃𝜃

Could optimize it using gradient ascent!
(need to compute 𝛻𝛻𝜃𝜃log𝑍𝑍(𝜃𝜃,𝑦𝑦))



MLE via Gradient Ascent

• What is the gradient of the log-likelihood with respect to 𝜃𝜃?

𝛻𝛻𝜃𝜃 log𝑍𝑍(𝜃𝜃,𝑦𝑦𝑚𝑚) = ?

(worked out on board)
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MLE via Gradient Ascent

• What is the gradient of the log-likelihood with respect to 𝜃𝜃?

𝛻𝛻𝜃𝜃 log𝑍𝑍(𝜃𝜃,𝑦𝑦𝑚𝑚) = �
𝐶𝐶

�
𝑚𝑚

�
𝑥𝑥𝐶𝐶

𝑝𝑝𝐶𝐶 𝑥𝑥𝐶𝐶|𝑦𝑦𝑚𝑚,𝜃𝜃 𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶 ,𝑦𝑦𝑚𝑚

This is the expected value of the feature maps under the joint 
distribution
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MLE via Gradient Ascent

• What is the gradient of the log-likelihood with respect to 𝜃𝜃?

𝛻𝛻𝜃𝜃 log 𝑙𝑙(𝜃𝜃) = �
𝐶𝐶

�
𝑚𝑚

𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶𝑚𝑚,𝑦𝑦𝑚𝑚 −�
𝑥𝑥𝐶𝐶

𝑝𝑝𝐶𝐶 𝑥𝑥𝐶𝐶|𝑦𝑦𝑚𝑚, 𝜃𝜃 𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶 ,𝑦𝑦𝑚𝑚

• To compute/approximate this quantity, we only need to 
compute/approximate the marginal distributions 𝑝𝑝𝐶𝐶(𝑥𝑥𝐶𝐶|𝑦𝑦,𝜃𝜃)

• This requires performing marginal inference on a different 
model at each step of gradient ascent!
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Moment Matching

• Let 𝑓𝑓 𝑥𝑥𝑚𝑚,𝑦𝑦𝑚𝑚 = ∑𝐶𝐶 𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶𝑚𝑚,𝑦𝑦𝑚𝑚

• Setting the gradient with respect to 𝜃𝜃 equal to zero and 
solving gives

�
𝑚𝑚

𝑓𝑓(𝑥𝑥𝑚𝑚,𝑦𝑦𝑚𝑚) = �
𝑚𝑚

�
𝑥𝑥

𝑝𝑝 𝑥𝑥|𝑦𝑦𝑚𝑚,𝜃𝜃 𝑓𝑓 𝑥𝑥,𝑦𝑦𝑚𝑚

• This condition is called moment matching and when the 
model is an MRF instead of a CRF this reduces to

1
𝑀𝑀
�
𝑚𝑚

𝑓𝑓(𝑥𝑥𝑚𝑚) = �
𝑥𝑥

𝑝𝑝 𝑥𝑥|𝜃𝜃 𝑓𝑓 𝑥𝑥
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Moment Matching

• As an example, consider a log-linear MRF

𝑝𝑝 𝑥𝑥 =
1
𝑍𝑍
�
𝐶𝐶

exp(𝜃𝜃𝐶𝐶(𝑥𝑥𝐶𝐶))

• That is, 𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶 is a vector that is indexed by 𝐶𝐶 and 𝑥𝑥𝐶𝐶whose 
only non-zero component corresponds to 𝜃𝜃𝐶𝐶(𝑥𝑥𝐶𝐶)

• The moment matching condition becomes

1
𝑀𝑀
�
𝑚𝑚

1𝑥𝑥𝐶𝐶=𝑥𝑥𝐶𝐶𝑚𝑚 = 𝑝𝑝𝐶𝐶 𝑥𝑥𝐶𝐶 𝜃𝜃 , for all 𝐶𝐶, 𝑥𝑥𝐶𝐶
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Regularization in MLE

• Recall that we can also incorporate prior information about 
the parameters into the MLE problem

• This involved solving an augmented MLE

�
𝑚𝑚

𝑝𝑝 𝑥𝑥𝑚𝑚 𝜃𝜃 𝑝𝑝(𝜃𝜃)

• What types of priors should we choose for the 
parameters?
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Regularization in MLE

• Recall that we can also incorporate prior information about 
the parameters into the MLE problem

• This involved solving an augmented MLE

�
𝑚𝑚

𝑝𝑝 𝑥𝑥𝑚𝑚 𝜃𝜃 𝑝𝑝(𝜃𝜃)

• What types of priors should we choose for the 
parameters?

• Gaussian prior: 𝑝𝑝 𝜃𝜃 ∝ exp(−1
2

(𝜃𝜃 − 𝜇𝜇)𝑇𝑇Σ−1(𝜃𝜃 − 𝜇𝜇)𝑇𝑇)

• Uniform over [0,1]
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Regularization in MLE

• Recall that we can also incorporate prior information about 
the parameters into the MLE problem

• This involved solving an augmented MLE

�
𝑚𝑚

𝑝𝑝 𝑥𝑥𝑚𝑚 𝜃𝜃 exp(−
1
2
𝜃𝜃𝑇𝑇𝐷𝐷𝜃𝜃)

• What types of priors should we choose for the 
parameters?

• Gaussian prior: 𝑝𝑝 𝜃𝜃 ∝ exp(−1
2

(𝜃𝜃 − 𝜇𝜇)𝑇𝑇Σ−1(𝜃𝜃 − 𝜇𝜇)𝑇𝑇)

• Uniform over [0,1]

29

Gaussian prior with a 
diagonal covariance 
matrix all of whose 
entries are equal to 𝜆𝜆



Regularization in MLE

• Using the previous Gaussian prior yields the following log-
optimization problem

log�
𝑚𝑚

𝑝𝑝 𝑥𝑥𝑚𝑚 𝜃𝜃 exp(−
1
2
𝜃𝜃𝑇𝑇𝐷𝐷𝜃𝜃) = �

𝑚𝑚

log𝑝𝑝(𝑥𝑥𝑚𝑚|𝜃𝜃) −
𝜆𝜆
2
�
𝑘𝑘

𝜃𝜃𝑘𝑘2

= �
𝑚𝑚

log𝑝𝑝(𝑥𝑥𝑚𝑚|𝜃𝜃) −
𝜆𝜆
2

|𝜃𝜃| 2
2
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Regularization in MLE

• Using the previous Gaussian prior yields the following log-
optimization problem

log�
𝑚𝑚

𝑝𝑝 𝑥𝑥𝑚𝑚 𝜃𝜃 exp(−
1
2
𝜃𝜃𝑇𝑇𝐷𝐷𝜃𝜃) = �

𝑚𝑚

log𝑝𝑝(𝑥𝑥𝑚𝑚|𝜃𝜃) −
𝜆𝜆
2
�
𝑘𝑘

𝜃𝜃𝑘𝑘2

= �
𝑚𝑚

log𝑝𝑝(𝑥𝑥𝑚𝑚|𝜃𝜃) −
𝜆𝜆
2

|𝜃𝜃| 2
2
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Known as ℓ2 regularization



Regularization

32

ℓ1 ℓ2



Duality and MLE

log𝑍𝑍(𝜃𝜃,𝑦𝑦) = max
𝑞𝑞

𝐻𝐻(𝑞𝑞) + �
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝑞𝑞𝐶𝐶 𝑥𝑥𝐶𝐶|𝑦𝑦 𝜃𝜃, 𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶 , 𝑦𝑦

log 𝑙𝑙 𝜃𝜃 = 𝜃𝜃,�
𝑚𝑚

�
𝐶𝐶

𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶𝑚𝑚,𝑦𝑦𝑚𝑚 −�
𝑚𝑚

log𝑍𝑍(𝜃𝜃, 𝑦𝑦𝑚𝑚)

Plugging the first into the second gives:

log 𝑙𝑙 𝜃𝜃 = 𝜃𝜃,�
𝑚𝑚

�
𝐶𝐶

𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶𝑚𝑚 ,𝑦𝑦𝑚𝑚 −�
𝑚𝑚

max
𝑞𝑞𝑚𝑚

𝐻𝐻(𝑞𝑞𝑚𝑚) + �
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝑞𝑞𝐶𝐶𝑚𝑚 𝑥𝑥𝐶𝐶|𝑦𝑦𝑚𝑚 𝜃𝜃,𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶 ,𝑦𝑦𝑚𝑚
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Duality and MLE

max
𝜃𝜃

log 𝑙𝑙 𝜃𝜃 = max
𝜃𝜃

min
𝑞𝑞1,…,𝑞𝑞𝑀𝑀

𝜃𝜃,�
𝐶𝐶

�
𝑚𝑚

𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶𝑚𝑚 ,𝑦𝑦𝑚𝑚 −�
𝑥𝑥𝐶𝐶

𝑞𝑞𝐶𝐶𝑚𝑚 𝑥𝑥𝐶𝐶|𝑦𝑦𝑚𝑚 𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶 ,𝑦𝑦𝑚𝑚 −�
𝑚𝑚

𝐻𝐻(𝑞𝑞𝑚𝑚)

• This is called a minimax or saddle-point problem

• When can we switch the order of the max and min?

• The function is linear in theta, so there is an advantage to 
swapping the order
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Saddle Point

35Source: Wikipedia



Sion’s Minimax Theorem

Let X be a compact convex subset of 𝑅𝑅𝑝𝑝 and 𝑌𝑌 be a convex subset 
of 𝑅𝑅𝑚𝑚

Let f be a real-valued function on 𝑋𝑋 × 𝑌𝑌 such that 

• 𝑓𝑓(𝑥𝑥,⋅) a continuous concave function over 𝑌𝑌 for each 𝑥𝑥 ∈ 𝑋𝑋

• 𝑓𝑓(⋅,𝑦𝑦) a continuous convex function over 𝑋𝑋 for each 𝑦𝑦 ∈ 𝑌𝑌

then

sup
𝑦𝑦

min
𝑥𝑥
𝑓𝑓(𝑥𝑥,𝑦𝑦) = min

𝑥𝑥
sup
𝑦𝑦
𝑓𝑓 𝑥𝑥,𝑦𝑦
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Duality and MLE

max
𝜃𝜃

min
𝑞𝑞1,…,𝑞𝑞𝑀𝑀

𝜃𝜃,�
𝐶𝐶

�
𝑚𝑚

𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶𝑚𝑚 ,𝑦𝑦𝑚𝑚 −�
𝑥𝑥𝐶𝐶

𝑞𝑞𝐶𝐶𝑚𝑚 𝑥𝑥𝐶𝐶|𝑦𝑦𝑚𝑚 𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶 ,𝑦𝑦𝑚𝑚 −�
𝑚𝑚

𝐻𝐻(𝑞𝑞𝑚𝑚)

is equal to

min
𝑞𝑞1,…,𝑞𝑞𝑀𝑀

max
𝜃𝜃

𝜃𝜃,�
𝐶𝐶

�
𝑚𝑚

𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶𝑚𝑚 ,𝑦𝑦𝑚𝑚 −�
𝑥𝑥𝐶𝐶

𝑞𝑞𝐶𝐶𝑚𝑚 𝑥𝑥𝐶𝐶|𝑦𝑦𝑚𝑚 𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶 ,𝑦𝑦𝑚𝑚 −�
𝑚𝑚

𝐻𝐻(𝑞𝑞𝑚𝑚)

Solve for 𝜃𝜃?
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Maximum Entropy

max
𝑞𝑞1,…,𝑞𝑞𝑀𝑀

�
𝑚𝑚

𝐻𝐻(𝑞𝑞𝑚𝑚)

such that the moment matching condition is satisfied

�
𝑚𝑚

𝑓𝑓(𝑥𝑥𝑚𝑚,𝑦𝑦𝑚𝑚) = �
𝑚𝑚

�
𝑥𝑥

𝑞𝑞𝑚𝑚 𝑥𝑥|𝑦𝑦𝑚𝑚 𝑓𝑓 𝑥𝑥,𝑦𝑦𝑚𝑚

and 𝑞𝑞1, … , 𝑞𝑞𝑚𝑚 are discrete probability distributions

• Instead of maximizing the log-likelihood, we could maximize 
the entropy over all approximating distributions that satisfy 
the moment matching condition

38



MLE in Practice

• We can compute the partition function in linear time over trees using 
belief propagation

• We can use this to learn the parameters of tree-structured models

• What if the graph isn’t a tree?

• Use variable elimination to compute the partition function (exact but 
slow)

• Use importance sampling to approximate the partition function (can 
also be quite slow; maybe only use a few samples?)

• Use loopy belief propagation to approximate the partition function 
(can be bad if loopy BP doesn’t converge quickly)

39



MLE in Practice

• Practical wisdom:

• If you are trying to perform some prediction task (i.e., MAP 
inference to do prediction), then it is better to learn the “wrong 
model”

• Learning and prediction should use the same approximations

• What people actually do:

• Use a few iterations of loopy BP or sampling to approximate the 
marginals

• Approximate marginals give approximate gradients (recall that 
the gradient only depended on the marginals)

• Perform approximate gradient descent and hope it works
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MLE in Practice

• Other options

• Replace the true entropy with the Bethe entropy and solve 
the approximate dual problem

• Use fancier optimization techniques to solve the problem 
faster

• e.g., the method of conditional gradients
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Course Project

• Pick a group (1-4) students

• Write a brief proposal and email it to me and Yibo

• Do the project

• Collect/find a dataset

• Build a graphical model

• Solve approximately/exactly some inference or learning task

• Demo the project for the class (~15 mins during last 2-3 weeks)

• Show your results

• Turn in a short write-up describing your project and results (due 
April 30)
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Course Project

• Meet with me and Yibo (more if needed)

• We’ll help you get started and make sure you picked a hard/easy 
enough goal

• For one person:

• Pick a small data set (or generate synthetic data)

• Formulate a learning/inference problem using MRFs, CRFs, 
Bayesian networks

• Example:  SPAM filtering with a Bayesian network using the UCI 
spambase data set (or other data sets)

• Compare performance across data sets and versus naïve 
algorithms
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Course Project

• For four people:

• Pick a more complex data set

• The graphical model that you learn should be more 
complicated than a simple Bayesian network

• Ideally, the project will involve both learning and 
prediction using a CRF or an MRF (or a Bayesian network 
with hidden variables)

• Example:  simple binary image segmentation on smallish 
images

• Be ambitious but cautious, you don’t want to spend a lot 
of time formatting the data or worrying about feature 
selection
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Course Project

• Lots of other projects are possible

• Read about, implement, and compare different 
approximate MAP inference algorithms (loopy BP, tree-
reweighted belief propagation, max-sum diffusion)

• Compare different approximate MLE schemes on synthetic 
data

• Perform a collection of experiments to determine when 
the MAP LP is tight across a variety of pairwise, non-binary 
MRFs

• If you are stuck, have a vague idea, ask me about it!
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Course Project

• What you need to do now

• Find some friends (you can post on Piazza if you need 
friends)

• Pick a project

• Email me and Yibo (with all of your group members cc’d) 
by 3/12

• Grade will be determined based on the demo, final report, 
and project difficulty
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