

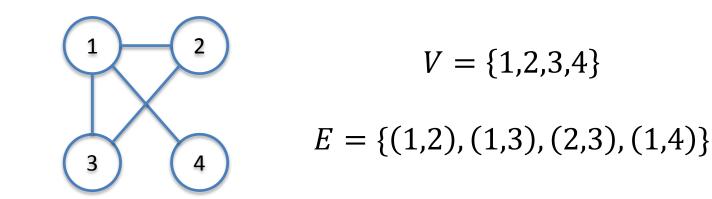
CS 6347 Lecture 2

Bayesian Networks

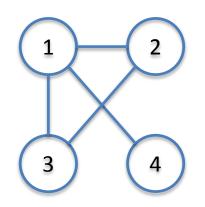
Recap

- Last time:
 - Course logistics
 - Review of basic probability
- Today:
 - Independent set example
 - What makes one probability distribution "better" than another?
 - Bayesian networks

• A graph G = (V, E) is defined by a set of vertices Vand a set of edges $E \subseteq V \times V$ (i.e., edges correspond to pairs of vertices)



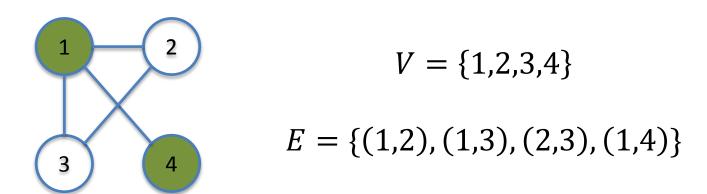
 A set S ⊆ V is an independent set if there does not exist an edge in E joining any pair of vertices in S



 $V = \{1, 2, 3, 4\}$

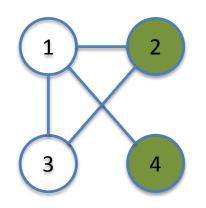
 $E = \{(1,2), (1,3), (2,3), (1,4)\}$

 A set S ⊆ V is an independent set if there does not exist an edge in E joining any pair of vertices in S



{1,4} is not an independent set!

 A set S ⊆ V is an independent set if there does not exist an edge in E joining any pair of vertices in S



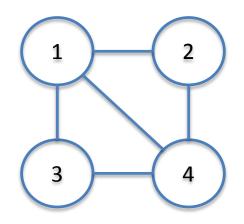
 $V = \{1, 2, 3, 4\}$ $E = \{(1, 2), (1, 3), (2, 3), (1, 4)\}$

{2,4} is an independent set

- Let Ω be the set of all vertex subsets in a graph G = (V, E)
- Let p be the uniform probability distribution over all independent sets in Ω
- Define for each $v \in V$ and each subset of vertices ω

 $X_{v}(\omega) = 1$, if $v \in \omega$ and $X_{v}(\omega) = 0$, otherwise

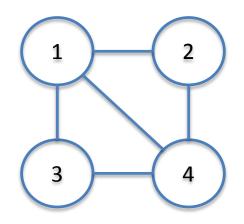
- $p(X_v = 1)$ is the fraction of all independent sets in *G* containing *v*
- p(x₁,...,x_n) ≠ 0 if and only if the x's define an independent set



•
$$p(X_1 = 1, X_2 = 0, X_3 = 0, X_4 = 1) = ?$$

•
$$p(X_1 = 0, X_2 = 1, X_3 = 1, X_4 = 0) = ?$$

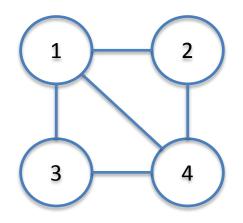
•
$$p(X_2 = 1) = ?$$



•
$$p(X_1 = 1, X_2 = 0, X_3 = 0, X_4 = 1) = 0$$

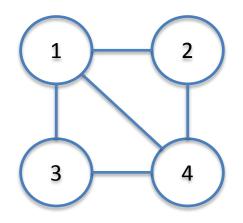
•
$$p(X_1 = 0, X_2 = 1, X_3 = 1, X_4 = 0) = ?$$

•
$$p(X_2 = 1) = ?$$



•
$$p(X_1 = 1, X_2 = 0, X_3 = 0, X_4 = 1) = 0$$

- $p(X_1 = 0, X_2 = 1, X_3 = 1, X_4 = 0) = 1/6$
- $p(X_2 = 1) = ?$



•
$$p(X_1 = 1, X_2 = 0, X_3 = 0, X_4 = 1) = 0$$

- $p(X_1 = 0, X_2 = 1, X_3 = 1, X_4 = 0) = 1/6$
- $p(X_2 = 1) = 1/3$

• How large of a table is needed to store an arbitrary distribution $p(X_V)$ over subsets of a given graph G = (V, E)?

• How large of a table is needed to store an arbitrary distribution $p(X_V)$ over subsets of a given graph G = (V, E)?

 $2^{|V|}$ -1

Computational Issue #1

- How much storage space is required to represent a given joint probability distribution?
 - Can we do better than the worst case?
 - What properties of the joint distribution affect this number?

- Consider a general joint distribution $p(X_1, ..., X_n)$ over binary valued random variables
- If X_1, \ldots, X_n are mutually independent random variables, then

$$p(x_1, \dots, x_n) = p(x_1) \dots p(x_n)$$

?

How much information is needed to store the joint distribution?

- Consider a general joint distribution $p(X_1, ..., X_n)$ over binary valued random variables
- If X_1, \ldots, X_n are mutually independent random variables, then

$$p(x_1, \dots, x_n) = p(x_1) \dots p(x_n)$$

How much information is needed to store the joint distribution?

n numbers

• This model is boring: knowing the value of any one variable tells you nothing about the others

- Consider a general joint distribution $p(X_1, ..., X_n)$ over binary valued random variables
- If $X_1, ..., X_n$ are mutually, conditionally independent given a different random variable Y, then

$$p(x_1, \dots, x_n | y) = p(x_1 | y) \dots p(x_n | y)$$

and

$$p(y, x_1, ..., x_n) = p(y)p(x_1|y) ... p(x_n|y)$$

• These models turn out to be surprisingly powerful, despite looking nearly identical to the previous case!

- Consider a different joint distribution $p(X_1, ..., X_n)$ over binary valued random variables
- Suppose, for i > 2, X_i is independent of X_1, \dots, X_{i-2} given X_{i-1}

$$p(x_1, \dots, x_n) = p(x_1)p(x_2|x_1) \dots p(x_n|x_1, \dots, x_{n-1})$$

= $p(x_1)p(x_2|x_1)p(x_3|x_2) \dots p(x_n|x_{n-1})$

• How much storage is needed to represent this model?

?

• This distribution is chain-like

- Consider a different joint distribution $p(X_1, ..., X_n)$ over binary valued random variables
- Suppose, for i > 2, X_i is independent of X_1, \dots, X_{i-2} given X_{i-1}

$$p(x_1, \dots, x_n) = p(x_1)p(x_2|x_1) \dots p(x_n|x_1, \dots, x_{n-1})$$

= $p(x_1)p(x_2|x_1)p(x_3|x_2) \dots p(x_n|x_{n-1})$

• How much storage is needed to represent this model?

2n - 1

• This distribution is chain-like

- Given a joint probability distribution (as a table), how complicated is it to compute individual probabilities?
 - Computing $p(X_1 = x_1)$ from a joint probability distribution $p(X_1 = x_1, ..., X_n = x_n)$ is one type of statistical inference

Marginal Distributions

• Given a joint distribution $p(X_1, ..., X_n)$, the marginal distribution over the i^{th} random variable is given by

$$p_i(X_i = x_i) = \sum_{x_1} \sum_{x_2} \dots \sum_{x_{i-1}} \sum_{x_i+1} \dots \sum_{x_n} p(X_1 = x_1, \dots, X_n = x_n)$$

- In general, marginal distributions are obtained by fixing some subset of the variables and summing out over the others
 - This can be an expensive operation!

Inference/Prediction

• Given fixed values of some subset, *E*, of the random variables, compute the conditional probability over the remaining variables, *S*

$$p(X_S|X_E = x_E) = \frac{p(X_S, X_E = x_E)}{p(X_E = x_E)}$$

• This involves computing the marginal distribution $p(X_E = x_E)$, so we refer to this as marginal inference

Inference/Prediction

• Given fixed values of some subset, *E*, of the random variables, compute the most likely assignment of the remaining variables, *S*

$$\operatorname*{argmax}_{x_S} p(X_S = x_S | X_E = x_E)$$

- This is called maximum a posteriori (MAP) inference
- We don't need to do marginal inference to compute the MAP assignment, why not?

- The amount of storage and the complexity of statistical inference are both affected by the independence structure of the joint probability distribution
 - More independence means easier computation and less storage
 - Want models that somehow make the underlying independence assumptions explicit, so we can take advantage of them (expensive to check all of the possible independence relationships)

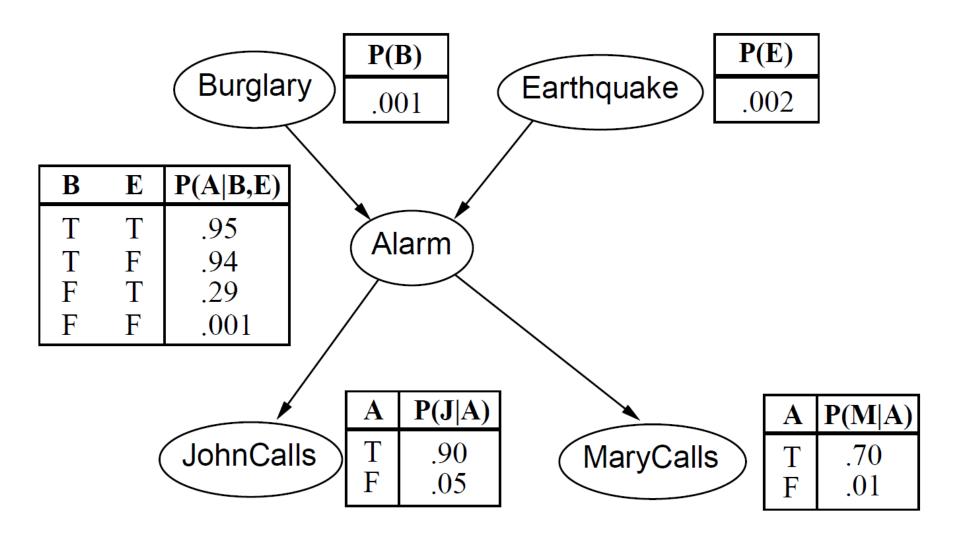
- A Bayesian network is a directed graphical model that represents independence relationships of a given probability distribution
 - Directed acyclic graph (DAG), G = (V, E)
 - Edges are still pairs of vertices, but the edges (1,2) and (2,1) are now distinct in this model
 - One node for each random variable
 - One conditional probability distribution per node
 - Directed edge represents a direct statistical dependence

- A Bayesian network is a directed graphical model that represents independence relationships of a given probability distribution
 - Encodes local Markov independence assumptions that each node is independent of its non-descendants given its parents
 - Corresponds to a **factorization** of the joint distribution

$$p(x_1, \dots, x_n) = \prod_i p(x_i | x_{parents(i)})$$

$p(x_1, \dots, x_n) = p(x_1)p(x_2|x_1)p(x_3|x_2) \dots p(x_n|x_{n-1})$

An Example



from Artificial Intelligence: A Modern Approach